The global community continues to face the urgent need to develop environmentally friendly methods to increase agricultural productivity. Using plant growth-promoting bacteria (PGPB) as plant growth stimulants could solve this problem, as this practice is more environmentally friendly than using fertilizers. This study characterized the Gordonia aichiensis P6PL2 bacterium associated with Vitis amurensis using whole-genome sequencing and in vitro and in vivo testing. The whole genome size of G. aichiensis P6PL2 was 5,435,824 bp with 5279 open reading frames. G. aichiensis P6PL2 possessed genes for the production of phytohormones (auxins and cytokinins) and an increased bioavailability of nutrients such as nitrogen, phosphorus, potassium, and sulfur. In addition, the presence of genes involved in synthesizing growth stimulants, such as gamma-aminobutyric acid and spermidine, has been demonstrated, as has the presence of genes involved in reducing various abiotic and biotic stress factors. Moreover, the results demonstrated the growth-promoting impact of a single application of G. aichiensis P6PL2 on seedlings and 30-day rice plants. This paper has shown and discussed the potential importance of G. aichiensis P6PL2 for agriculture.