Increase in isoflavonoid content in Glycine max cells transformed by the constitutively active Ca2+ independent form of the AtCPK1 gene

Veremeichik G.N., Grigorchuk V.P., Silanteva S.A., Shkryl Y.N., Bulgakov D.V., Brodovskaya E.V., Bulgakov V.P.

В журнале Phytochemistry

Год: 2019 Том: 157

Calcium-dependent protein kinases (CDPKs) represent a class within a multigene family that plays an important role in biotic and abiotic plant stress responses and is involved in the regulation of secondary metabolite biosynthesis. Our previous study showed that overexpression of the mutant constitutively active Ca2+ independent form of the AtCPK1 gene (AtCPK1-Ca) significantly increased the biosynthesis of anthraquinones and stilbenes in Rubia cordifolia L. and Vitis amurensis Rupr. transgenic cell cultures, respectively. Here, we have established transgenic calli of soybean plants Glycine max (L.) Merr. that express the AtCPK1-Ca gene. Heterologous expression of the AtCPK1-Ca gene provoked a 5.2-fold increase in total isoflavone production up to 208.09 mg/L, along with an increase in isoflavone aglycones production up to 6.60 mg/L, which is 3-fold greater than that of the control culture. The production of prenylated isoflavones significantly increased, reaching 3.78 mg/L, 13- fold higher than in the control culture. The expression levels of 4-coumarate:CoA ligases, isoflavone synthases, 2- hydroxyisoflavanone dehydratase, isoflavone dimethylallyltransferase, and coumestrol 4-dimethylallyltransferase genes in transgenic cell cultures significantly increased. Thus, heterologous expression of the AtCPK1-Ca gene can be used to bioengineer plant cell cultures that produce isoflavonoids.

DOI 10.1016/j.phytochem.2018.10.023