
This article was downloaded by: [NEICON Consortium]

On: 28 August 2009

Access details: Access Details: [subscription number 781557264]

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

GFF

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t902829199>

Permian to earliest Cretaceous climatic oscillations in the eastern Asian continental margin (Sikhote-Alin area), as indicated by fossils and isotope data

Yuri D. Zakharov ^a; Jingeng Sha ^b; Alexander M. Popov ^a; Peter P. Safronov ^a; Svetlana A. Shorochova ^c; Elena B. Volynets ^d; Alexander S. Biakov ^e; Valentina I. Burago ^f; Vera G. Zimina ^a; Irina V. Konovalova ^f

^a Far Eastern Geological Institute, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia ^b

LPS, Nanjing Institute of Geology and Palaeontology, Academia Sinica, Nanjing, P.R. China ^c Institute of Engineering and Social Ecology, Far Eastern State Technical University, Vladivostok, Russia ^d Institute of Biology and Soil Sciences, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia ^e North-East Interdisciplinary Scientific Research Institute, Far Eastern Branch, Russian Academy of Sciences, Magadan, Russia ^f Primorskaya Prospecting and Survey Expedition, Vladivostok, Russia

Online Publication Date: 01 June 2009

To cite this Article Zakharov, Yuri D., Sha, Jingeng, Popov, Alexander M., Safronov, Peter P., Shorochova, Svetlana A., Volynets, Elena B., Biakov, Alexander S., Burago, Valentina I., Zimina, Vera G. and Konovalova, Irina V.(2009)'Permian to earliest Cretaceous climatic oscillations in the eastern Asian continental margin (Sikhote-Alin area), as indicated by fossils and isotope data',GFF,131:1,25 — 47

To link to this Article: DOI: [10.1080/11035890902867761](https://doi.org/10.1080/11035890902867761)

URL: <http://dx.doi.org/10.1080/11035890902867761>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Permian to earliest Cretaceous climatic oscillations in the eastern Asian continental margin (Sikhote-Alin area), as indicated by fossils and isotope data

YURI D. ZAKHAROV¹, JINGENG SHA², ALEXANDER M. POPOV¹, PETER P. SAFRONOV¹, SVETLANA A. SHOROCHOVA³, ELENA B. VOLYNETS⁴, ALEXANDER S. BIAKOV⁵, VALENTINA I. BURAGO⁶, VERA G. ZIMINA¹ and IRINA V. KONOVALOVA⁶

Zakharov, Y.D., Sha, J.-G., Popov, A.M., Safronov, P.P., Shorochova, S.A., Volynets, E.B., Biakov, A.S., Burago, V.I., Zimina, V.G. & Konovalova, I.V., 2009: Permian to earliest Cretaceous climatic oscillations in the eastern Asian continental margin (Sikhote-Alin area), as indicated by fossils and isotope data. *GFF*, Vol. 131 (Pt. 1–2, June), pp. 25–47. Stockholm. ISSN 1103-5897.

Abstract: Palaeozoological, palaeobotanical and geochemical analyses of Lower Permian to the lowermost Cretaceous sediments exposed in the southern Russian Far East (Bureya–Jiamusi–Khanka superterrane and the Sergeevka terrane), and higher latitude areas (northern Russian Far East and Spitsbergen) suggest a direct relationship with global climatic events defined by the data from oxygen-isotopic palaeotemperatures. Several positive carbon-isotopic anomalies discovered within the uppermost Cisuralian, Guadalupian, early Lopingian and Aalenian–Bajocian intervals are possibly connected to strong hydrological intermixing of oceanic waters under the influence of considerable thermal gradients.

Keywords: Permian, Triassic, Jurassic, Cretaceous, fossils, palaeotemperatures, carbon-isotope anomalies, Russian Far East, Spitsbergen.

¹Far Eastern Geological Institute, Far Eastern Branch, Russian Academy of Sciences, Stoletiya Prospect 159, Vladivostok 690022, Russia; yurizakh@mail.ru

²LPS, Nanjing Institute of Geology and Palaeontology, Academia Sinica, 39 East Beijing Road, Nanjing, P.R. China; jgsha@nigpas.ac.cn

³Institute of Engineering and Social Ecology, Far Eastern State Technical University, Vladivostok 690000, Russia

⁴Institute of Biology and Soil Sciences, Far Eastern Branch, Russian Academy of Sciences, Stoletiya Prospect 159, Vladivostok 690022, Russia; volynets@ibss.dvo.ru

⁵North-East Interdisciplinary Scientific Research Institute, Far Eastern Branch, Russian Academy of Sciences, Portovaya Street 16, Magadan 685000, Russia; stratigr@neisri.ru

⁶Primorskaya Prospecting and Survey Expedition, Okeansky Prospect 31, Vladivostok 690000, Russia

Manuscript received 8 September 2008. Revised manuscript accepted 11 February 2009.

Introduction

The interpretation of climatic change seen in the late Paleozoic to middle Mesozoic deposits remains a matter for extensive discussion (Francis 1994; Golonka et al. 1994; Larsson et al. 2000; Mei & Henderson 2001; Vajda 2001; Chumakov 2004; Chen et al. 2005; Korte et al. 2005a, 2005b; Hyde et al. 2006; Shen et al. 2006; Galfetti et al. 2007; Yin et al. 2007; Jansson et al. 2008). The southern Russian Far East (South Primorye, or Ussuri region, and Lesser Hingan, Fig. 1) offers a highly favourable area for palaeoclimatological investigation of Permian to Early Cretaceous marine and terrestrial sequences, yielding diverse fossil fauna and flora.

The main aim of this study is to show the evidence of climatic changes seen in the Sakmarian to Berriasian sediments of the southern Russian Far East using articulate brachiopod, mollusc and floral successions, correlated with global oxygen and carbon-isotope events on the basis of published and original data.

Materials and methods

Invertebrate and plant remains, which compose the traditional basis for marine and non-marine Permian to Lower Cretaceous

biostratigraphy, as well as original data from the isotopic composition of some Permian organogenic carbonates are used in this study for palaeoclimatic reconstruction. Certain data on Permian plants and brachiopods and Late Triassic bivalve molluscs of South Primorye were taken from Kiparisova (1972), Burago & Kotlyar (1974), Burago (1979, 1983, 1986, 1990), Kotlyar et al. (1989, 2006) and Okuneva (2002), respectively. However, herein we have investigated Permian to Early Cretaceous fossils, and analysed the carbon and oxygen isotopic composition of Permian organogenic carbonates from the north Far East Russia and Spitsbergen.

The following methods were used to determine diagenetic alterations in the calcite: (1) visual signs; (2) degree of integrity of microstructure under a SEM; (3) preliminary luminescent test using a JXA–8200 (JEOL, Tokyo, Japan) microanalyser and (4) preliminary metallic-element measurements. Results obtained show that the analysed invertebrate shell material fulfils diagenetic screening criteria and the samples were therefore considered suitable for both carbon-isotope and, in some cases,

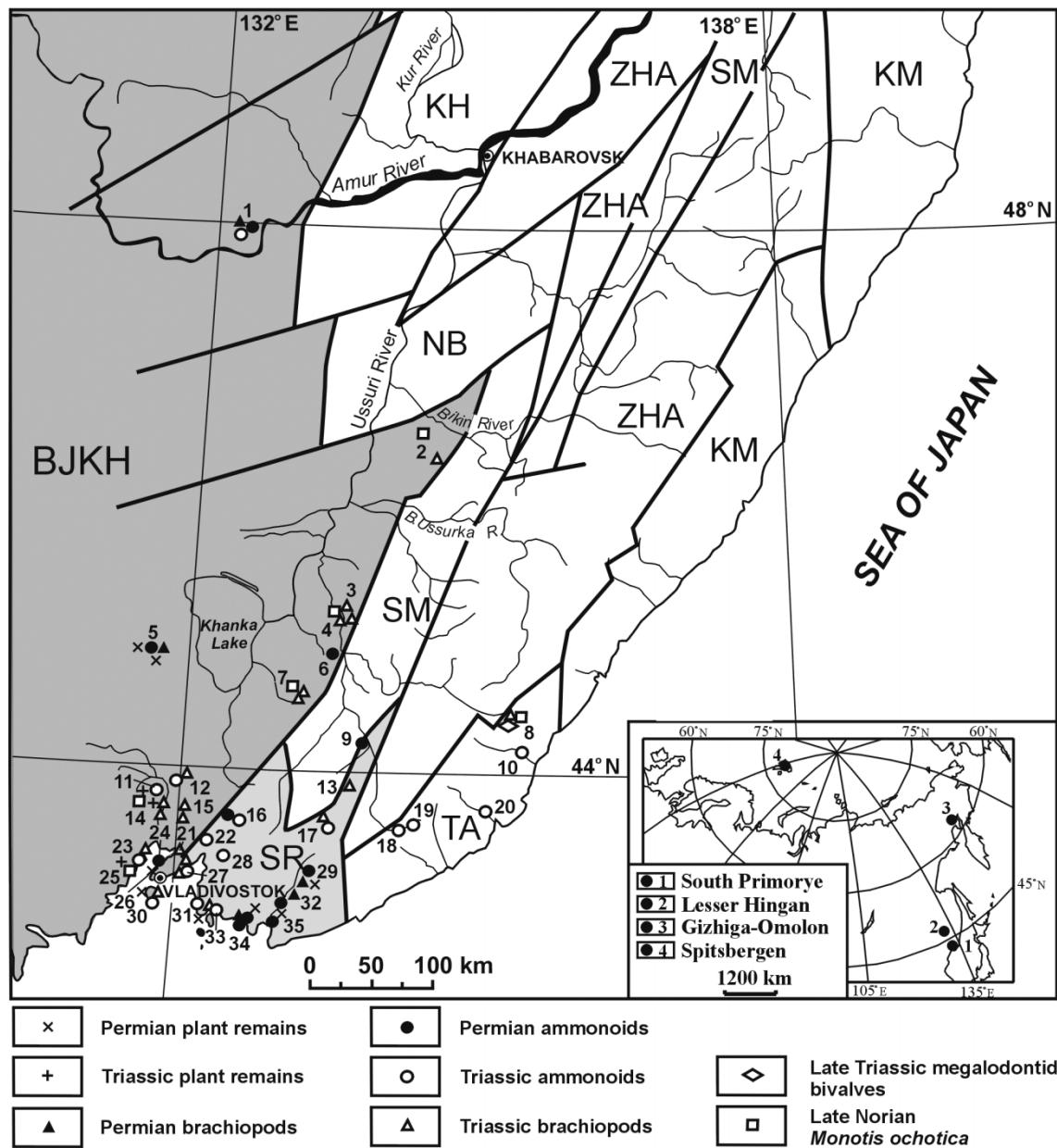


Fig. 1. Distribution of Permian and Triassic macrofossils in different terranes of the Sikhote-Alin area, southern Russian Far East, showing southeastern, eastern and northeastern configuration of the shallow-water sea basin, named the Ussuri-Lesser Hingan Sea, within the bounds of the BJKH and the SR. Other terranes include: SM, Samarka; ZHA, Zhuravlevka-Amur; KM, Kema; NB, Nadanhada-Bikin; KH, Khabarovsk (based on terrane maps of Golozubov (2006) and Kemkin (2006)). Localities: 1, Lesser Hingan, Bolshiye Churki; 2, Bikin River basin (Marevka and Ulyanovka); 3, Malinovka River basin; 4, Krylovka River basin (Krylovka and Gornaya); 5, Pogranichnyj village; 6, Arsenyevka River basin (Lagernyj); 7, Yakovlevka and Andreevka villages; 8, Dalnegorsk area (Nezhdanka); 9, Pavlovka River basin (Levaya Antonovka); 10, Kavalerovsky Creek; 11, Razdolnaya River basin; 12, Ussurijsk town area (Komarovka and Rakovka); 13, Ussuri River headstream (Arkhipovka village); 14, Perevoznaya River basin; 15, villages in the Razdolnoye area (Popovka, Kiparisovka, Alekseevka and Knevichanka); 16, Artyomovka River basin; 17, Sergeevka River basin (Imalinovskaya, Tekhnichesky); 18, Kievka River basin; 19, Chernaya River basin; 20, Avvakumovka River basin (Novonikolaevka village); 21, Peschanka River basin; 22, Artyom town area; 23, Western Amur Gulf (Atlasov); 24, Bogataya River basin; 25, Amba River basin; 26, SE part of Vladivostok City (Pervaya Rechka and Groznyj); 27, Western Ussuri Gulf area (Tri Kamnya and Basargin); 28, Smolyaninovo village; 29, Pilnikov Creek; 30, Russian Island; 31, E. Ussuri Gulf (Dunai and Golyj); 32, Senkina Shapka Cliff; 33, Abrek Bay area; 34, Nakhodka area (Nakhodka Reef, Tungus and Neizvestnaya bays); 35, Mount Sestra.

oxygen-isotope analysis. In Kungurian brachiopod shells (Spitsbergen) with excellently-preserved fibrous microstructure, some siliceous parcels were recognised in SEM (JSM-6300) and these were excluded from the isotope analysis.

Oxygen and carbon isotope measurements were made by using a Finnigan MAT-252 mass spectrometer at the Analytical

Center of the Far Eastern Geological Institute (FEGI), Vladivostok. The laboratory gas standard was calibrated relative to calcite National Bureau of Standards (NBS) 19 and equals $1.8 \pm 0.10\text{‰}$ for oxygen relative to the Vienna Pee Dee Belemnite (VPDB) and $-0.75 \pm 0.10\text{‰}$ for carbon. Reproducibility of replicate standards was always better than 0.10‰ .

In calculating temperatures a $\delta^{18}\text{O}$ of $-1.2\text{\textperthousand}$ VPDB (equivalent to $-1.0\text{\textperthousand}$ SMOW) was thought to be appropriate (Savin 1977), since we assume that icecaps were not present during Permian times. Anderson & Artur's (1983) scale was used for palaeotemperature calculation from calcitic material.

Cathodoluminescence studies were carried out with a JXA-8100 microanalyser (JEOL) coupled with SEM. Elemental concentrations during preliminary measurements were determined by energy-dispersion X-ray spectrometer INCA Energy 350 (Oxford) at FEGI.

Observations and results

Geological setting

The main area of investigation was the Bureya–Jiamusi–Khanka superterrane (BJKH) and Sergeevka terrane (SR, Fig. 1) located between the Sino–Korean craton to the south and the Sikhote–Alin fold belt to the east (Khanchuk et al. 1995; Golozubov 2006; Kemkin 2006). A detailed description of Permian to Jurassic facies and biostratigraphical units has been presented elsewhere (Burago 1973, 1986; Zimina 1977, 1997a, 1997b; Kotlyar et al. 1989; Zakharov & Oleinikov 1994; Markevich & Zakharov 2004; Markevich et al. 2005; V.A. Zakharov et al. 2005; Kotlyar et al. 2006).

The Lower Permian (Sakmarian–Artinskian) plant-bearing Dunai Village Formation in South Primorye comprises volcanic-terrigenous strata, 1100–3900 m thickness. The overlying Kungurian plant, brachiopod and ammonoid-bearing Abrek Bay and Pospelov Cape formations (several hundred metres thick) and the Pilnikov Creek beds (180–1000 m thick) are composed of terrigenous and volcanic (small portion) deposits of continental, lagoonal and nearshore origin. The Roadian–Wordian plant, brachiopod and ammonoid-bearing Vladivostok City Formation (570–1600 m thick) is dominated by volcanic rocks and volcanoclastic and siliciclastic sediments of nearshore and non-marine origin. The latest Wordian–Capitanian Chadalaz Ridge Formation (900–1200 m thickness) mainly comprises siliciclastic and carbonate shallow-water deposits with abundant marine invertebrates. The Wuchiapingian–Changhsingian Lyudyanza Bay (about 720 m thickness) and Yastrebovka River formations (about 30 m thickness) and the latest Changhsingian Kapreevka Village beds (about 150 m thickness) mainly consist of siliciclastic and volcanoclastic sediments, containing large carbonate build-ups with abundant and diverse marine invertebrate fossils.

The Lower Triassic (Induan) Lazurnaya Bay Formation (105 m thickness), found everywhere in the south Far East is represented by coarse-grained clastics and sandstones with lenses of coquina yielding numerous molluscan remains. The early Olenekian formations (Tobizin and Schmidt Cape, about 130 and 40 m thick, respectively) in the BJKH superterrane are comprised mainly of shallow-water marine sandy facies with lenses of coquina, yielding abundant ammonoids. These sequences are overlain by silty-pelitic facies of the Zhitkov Cape Formation (82 m thickness) with numerous calcareous concretions, yielding abundant and diverse cephalopod faunas. A similar silty-pelitic facies is common for both the lower Olenekian and the upper Olenekian in the SR. The Anisian Karazin Cape Formation (not less than 129 m thickness) in the southern Russian Far East composed mainly of fucoid sandstones with large septarian concretions, yielding abundant

ammonoids. Ladinian deposits in the southern Far East (Sputnik Station, Tractorny Creek and, apparently, Akhlestyshev Cape formations), resting unconformably on the erosion surface of the Anisian, are composed of siltstones, quartz sandstones and some intercalating mudstones, yielding rare mollusc and amphibian remains. Late Triassic deposits lie unconformably upon the Permian or Ladinian in the BJKH superterrane. The early Carnian Kiparisovo Village Formation is represented by lagoonal sediments with halobiid bivalves and rare brachiopods and is conformably overlain by late Carnian non-marine deposits of the coal-bearing Sadgorod Station Formation. Marine Carnian siltstones with rare ammonoids are known only in exotic blocks of terrigenous rocks in the SR and Taukha terranes. The Norian in the BJKH superterrane is represented by intercalation of marine and non-marine terrigenous sediments (early–middle Norian Peschanka River, middle Norian Amba River (coal-bearing) and late Norian Perevoznaya River formations), overlain by possible Rhaetian conglomerate and sandstone. Norian marine sediments in the SR are known as the Imalinov Creek Series.

The Lower Jurassic (Hettangian) Shitukhe River Formation, 250–300 m thickness, represented by non-marine and nearshore marine plant and mollusc-bearing terrigenous deposits in the SR occurs with an erosional and small angular non-conformity on Anisian marine sediments of the Shimeuza Village Series. The Triassic–Jurassic boundary is not exposed in the area. The Sinemurian mollusc-bearing beds, 175 m thickness, of the Trudny Peninsula Member in the SR are represented by conglomerate and siltstone. The 480 m thick Sinemurian–Pliensbachian Demidovo Village Formation in the SR terrane has been divided into lower and upper members. The lower member (300 m thickness) is represented by siltstones, greywackes with the Sinemurian ammonoid *Coronoceras*, acidic tuff and tuffite interbeds. The upper member (180 m thickness) occurs conformably upon the lower member and was transgressive over the Middle Triassic beds of the Shimeusa River Series. It consists mainly of sandstones and the Pliensbachian ammonoid *Arieticeras* has been identified in these successions. The Sinemurian–upper Toarcian plant and mollusc-bearing sequences (60–100 m thick) in the SR terrane, consisting essentially of submarine sandstones and occurs through erosional planar disconformity above the Shitukhe River Formation. The Pliensbachian–upper Toarcian bivalve-bearing Komarovka River Formation (about 90 m thickness), consisting of greywackes with thin interbeds of gravelstone, conglomerates and palitic tuffs, occurs with an erosional contact on top of the Triassic in the BJKH superterrane. The upper Toarcian–lower Bathonian Bonivur Creek Formation (30–400 m thick), represented by shallow-water bivalve-bearing marine terrigenous sequences occurs conformably upon the Komarovka River Formation, or transgressively on older formations, including the Upper Triassic in the BJKH superterrane. The upper Aalenian–Bathonian (600 m thickness) plant-bearing and coal-bearing non-marine and submarine sediments of the Ananyevka River series in the BJKH superterrane are represented mainly by sandstones, and rarer siltstones, tuffs, coaly-clayey schists, and coal; their contact with the underlying formation is unknown. The Bathonian Monakino Village plant-bearing series (more than 240 m thickness) is non-marine and occurs disconformably through angular unconformity on older formations in the BJKH superterrane. The series is divided into lower (rhyolitic) and upper (terrigenous-volcanic) members. The middle–upper

Bathonian Rakovka series (255–350 m thickness) in the BJKH superterrane consists of submarine greywackes. The middle Tithonian–lower Berriasian Chigan Cape Formation (252 m thickness) in the SR terrane consists mainly of shallow-water sediments (conglomerates, fucoid sandstones, siltstones and silty claystones with thin coal lenses), resting unconformably on older formations, including the middle Anisian. However, the lower Berriasian follows conformably on Tithonian sediments, within the same formation (Konovalova & Markevich 2004).

Palaeoclimatic evidence from Permian fossils

Sakmarian to Artinskian

Middle Early Permian sediments of the Dunai Peninsula Formation are characterised by the absence of coal. The Dunai flora consists of typical Siberian elements (*Paracalamites*, *Sphenopteris*, *Angaropteridium*, *Cordaites*, *Rufloria*, *Evenkiella*, *Gaussia*, *Krylovia* and *Xiphophyllum* (Eliseeva & Radchenko 1964; Meyen 1966; Taschi & Burago 1974; Zimina 1977, 1997a; Burago 1979). Thus, climatic evidence based on fossil plants and the lithology of the upper part of the formation suggests that South Primorye was warm-temperate and arid during the Sakmarian and much of the Artinskian (Fig. 2).

Kungurian

In the early to middle Kungurian, South Primorye continued to be located in the warm-temperate climatic zone based on the composition of the fossil plant assemblages encountered in the lower part of the Abrek Bay and the lower part of the Pospelov Cape formations in the Abrek Bay area and Russian Island (Fig. 1, loc. 30 and 33). The sediments yield an abundant and diverse Siberian floristic association (*Sphenophyllum*, *Paracalamites*, *Annularia*, *Annulina*, *Koretrophyllices*, *Tschernovia*, *Spheopteris*, *Zamiopteris*, *Cordaites*, *Rufloria*, *Crassinervia*, *Nephropsis*, *Vojnovskya*, *Gaussia*, *Wattia*, *Samaropsis*, *Cordaicarpus*, *Skokia*, *Sylvella*) (Burago & Kotlyar 1974; Burago 1979, 1983; Zimina 1997a). The paleoclimatic interpretation of a warm-temperate climatic zone for the early Kungurian is in good agreement with the presence of the Boreal type ammonoid (*Epijuresanites*) (Zakharov et al. 1999b) and brachiopods (*Rhynoleichus*, *Primorewia* and *Tomiopsis*) (Kotlyar et al. 2006) in the middle Kungurian Pilnikov beds of the Partizanskaya River Basin (Fig. 1, loc. 29).

The first appearance of Cathaysian elements (*Sphenopteris*, *Cladophlebis*, *Protoblechnum* and *Pterophyllum*) in South Primorye was documented for the late Kungurian portion of the Pospelov Cape Formation in the Tikhaya Bay, Mingorodok and Russian Island areas (Zimina 1997a; Kotlyar et al. 2006) and western Primorye (Burago & Kotlyar 1974; Burago 1979, 1983, 1986). These elements in the association constitute about 5%; other genera are represented by the Siberian elements; *Paracalamites*, *Koretrophyllices*, *Prynadaeopteris*, *Pecopteris*, “*Callipteris*”, *Odontopteris*, *Comia*, *Cordaites*, *Rufloria*, *Psygophyllum*, *Samaropsis*, *Cardiocarpus*, *Sylvella* and others. This suggests a short-term climatic optimum during the late Kungurian. However, more research is needed to define the position of the Kungurian–Roadian boundary in the South Primorye region.

Roadian to Wordian

Up to 34% of the Cathaysian macroflora (*Lobatannularia*, *Annularia*, *Schizoneura*, *Sphenophyllostachys*, *Pecopteris*, *Neuropteridium*, *Taeniopteris*, *Pterophyllum*, *Bicoemplexopteridium* and *Rhipidopsis*) has been documented in the Vladivostok floristic assemblage (Burago 1983, 1986, 1990) in the Vladivostok City Formation and sequences corresponding to the lowermost part of the Chadalaz Range Formation. Other components in the floral assemblage found in the Pervaya Rechka (Fig. 1, loc. 26) and Shevelevka Village sections and in some localities of south-western Primorye are *Prynadaeopteris*, *Callipteris*, *Comia*, *Compsopteris*, *Protoblechnum*, *Rufloria*, *Crassinervia*, *Nephropsis*, *Psygophyllum*, *Dicranophyllum*, *Mengrammia*? and others (Burago 1983, 1986; Zimina 1997a). This would support an almost subtropical climate in the southern Russian Far East during the Roadian–Wordian, with the exception of the very end of the Wordian (*Monodexodina sutschanica*–*Neomisellina dutkevichi* Zone), characterised by domination of Boreal-type brachiopods in the marine realm (Kotlyar et al. 2006).

Latest Wordian to early late Capitanian

The Sitsa Flora of the Chandalaz Range Formation of the Partizanskaya River basin is considered to be of a Midian (latest Wordian to Capitanian) age (Burago 1983, 1986; Kotlyar et al. 1989, 2006) based on the macroflora such as *Annularia*, *Astrotheca*, *Prynadaeopteris*, *Peltaspernum*, *Pursongia*, “*Callipteris*”, *Comia*, *Cordaites*, *Rufloria*, *Psygophyllum*, *Ginkgophytopis* and some others. The Capitanian climate has been interpreted as cool-temperate and humid as the Sitsa assemblage yields only 14–22% of Cathaysian elements, e.g. *Taeniopteris*, *Lobatannularia* and as it is further characterised by the appearance of the Siberian elements; *Annularia*? *jeruunakovensis* Neuburg, *A.?* *sibirica* Radchenko, *Psygophyllum sibiricum* (Zalesky), *Cordaites insignis* (Radchenko). Additionally, some coal layers are present in the Sitsa plant-bearing beds. However, Zimina (1997b) interpreted a somewhat older age for the Sitsa flora based on its taxonomic composition. Abundant Capitanian marine fossils (foraminifera, brachiopods and ammonoids) from South Primorye and the Bolshiye Churki area (Fig. 1, loc. 1) provide evidence for the Tethyan connection of both the South Primorye and Amur River areas (Kotlyar et al. 1997, 2006).

Wuchiapingian to Changhsingian

Late Permian continental sediments are unknown in the South Primorye SR terrane; only rare plant remains (*Taeniopteris*) have been reported from marine sediments in the area (Burago 1986). Judging from these traces of the *Taeniopteris* flora in the Lyudyanza Bay Formation and the lack of *Cordaites*, Burago (1986) interpreted a warm climate with increasing humidity in South Primorye during the Late Permian.

Analysing the marine fossils, we also discern minor temperature fluctuations in the southern Far East during most of the Wuchiapingian to early late Changhsingian, because the *Stacheoceras orientale* and *Xenodiscus subcarbonarius* beds, early Wuchiapingian limestones of the Nakhodka Reef (Fig. 1, loc. 34) yield the typical Tethyan-type ammonoids *Neogeoceras*, *Stacheoceras* and *Xenodiscus* (Zakharov & Pavlov 1986a), as well as brachiopods (Kotlyar et al. 2006) and diverse

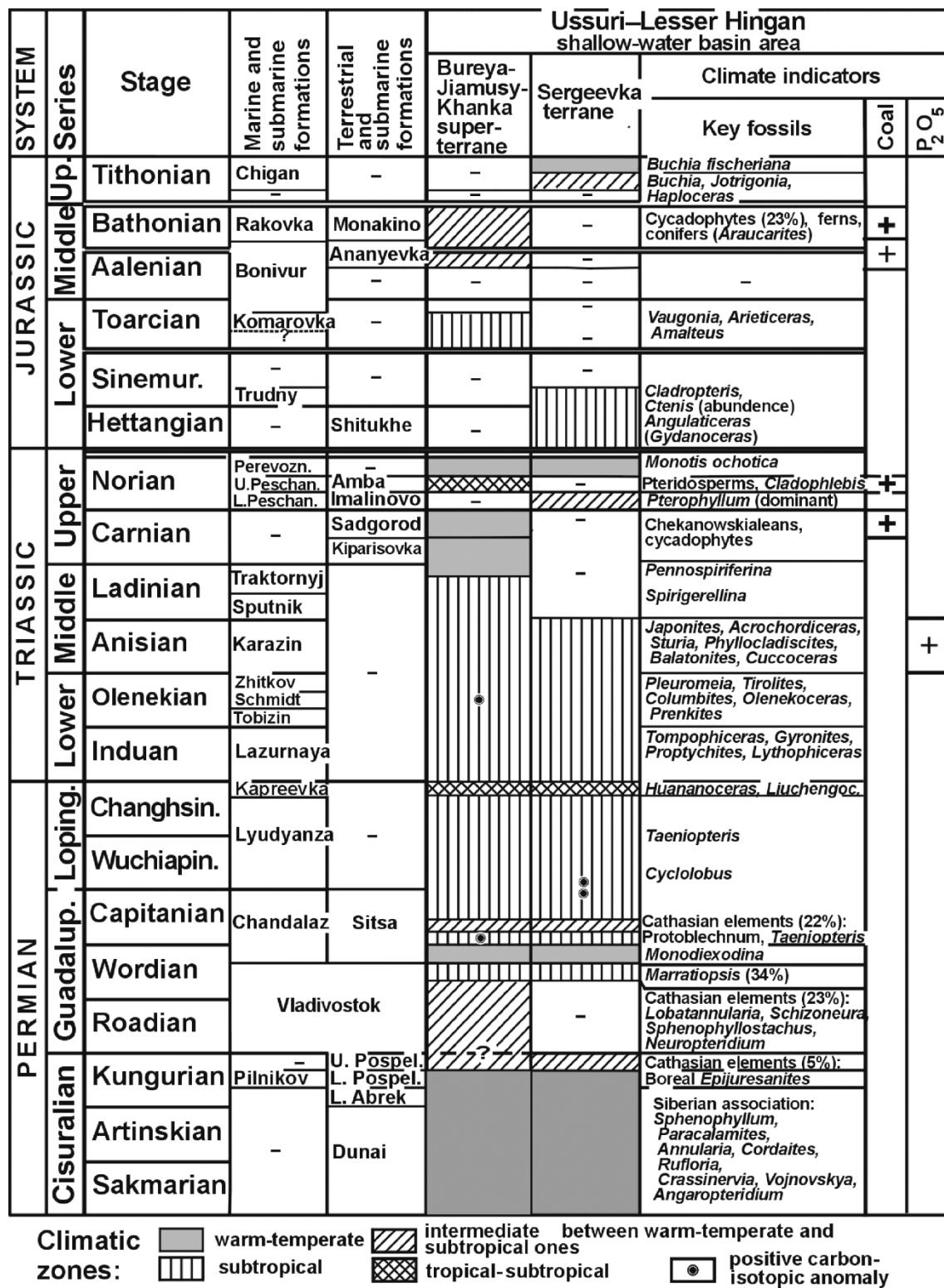


Fig. 2. Reconstruction of Permian–Triassic climatic changes in the shallow-water Ussuri-Lesser Hingan Sea area (BJKH and SR area): evidence from paleofloral, brachiopod, ammonoid, bivalve and carbon-isotope data.

tropical-subtropical sphinctozoans (Boiko et al. 1991). The middle Wuchiapingian *Cyclolobus kiselevae* Zone in South Primorye and the late Wuchiapingian *Eusanyangites bandoi* beds are also characterised by typical Tethyan fossils comprising ammonoids, including araxoceratids (Zakharov

1983; Zakharov & Pavlov 1986a, 1986b), and small foraminifera (Vuks & Chedia 1986).

The warmest Permian interval of the Southern Russian Far East seems to have been the latest Changhsingian based on the warm climate-loving ammonoid assemblage including

Changhsingoceras, *Huananoceras*, *Liuchengoceras* and *Sinoceltites*). This assemblage is similar to that of the Cathaysian Province, as discovered in both the *Huananoceras qianjiangense* Zone of the Partizanskaya River Basin and the Pleuronodoceratidae-*Liuchengoceras* beds of the Artymovka River Basin (Zakharov & Oleinikov 1994). This conclusion is supported by the discovery of brachiopod species (*Crurithyris flabelliformis* Liao and *Araxathyris minor* Grunt), common for the uppermost Changhsingian in South China, in the *Huananoceras qianjiangense* Zone of the Partizanskaya River Basin (Zakharov & Oleinikov 1994; Zakharov et al. 1997a).

Palaeoclimatic evidence from Triassic fossils

Induan to Olenekian

On the Russian Island, South Primorye, Triassic basal conglomerates overlay Roadian plant-bearing sediment of the Lower Vladivostok City Formation. Erosion of several middle-late Permian sediments (Upper Vladivostok, Chandala and Lyudyanza) seems to be one of the events coeval to the largest end-Permian regression and widespread extensive volcanism (Yin et al. 2007), which led mainly to significant aridity and climate warming during the Early Triassic.

A common, Early Triassic plant adapted to arid conditions from the Southern Russian Far East is *Pleuromeia* encountered in the lower part of the upper Olenekian (*Neocolumbites insignis* Zone of the Zhitkov Cape Formation (Krassilov & Zakharov 1975). According to rare palaeobotanical evidence (*Cladophlebis gracilis* Sze, V.I. Burago's determination, personal communication), obtained from the upper part of the upper Olenekian (*Subfengshanites multiformis* Zone), a change in climatic conditions from arid to humid took place in the Southern Far East by the end of the Olenekian.

Induan and Olenekian ammonoids from the Southern Far East are represented by Tethyan (*Glyptophiceras*, *Owenites*, *Proshpingitoides*, *Tirolites*, *Columbites*, *Arnautoceltites*, *Prenkites* and some others) and cosmopolitan (e.g. *Hedenstroemia*, *Euflemingites*, *Arctoceras*, *Wasatchites*) elements, although some Boreal-type elements (*Olenekoceras*, *Northophiceras* and *Svalbardiceras*) are reported from the lower part of the upper Olenekian (Zakharov 1997a). Early Triassic articulate brachiopods *Abrekia*, *Paranorellina*, *Hustedtiella*, "Fletcherithyris", *Lepismatina* (Bittner 1899; Dagys 1974), *Piarorhynchella*? and *Lissorhynchia* (A.M. Popov, unpublished data) reported for South Primorye are also common in Tethyan areas but among them, only *Hustedtiella spitsbergensis* has been found at higher latitudes in Spitsbergen (Dagys 1974). This assemblage may reflect a position of the Southern Russian Far East in the subtropical climatic zone during the Early Triassic.

Anisian to Ladinian

Based on data of phosphate distribution in the Far East and in Arctic Siberia, the Early Triassic arid-climate was replaced by a humid one in this extensive territory during the middle Anisian, possibly in relation to a sea level rise (Zakharov & Shkolnik 1994). Most of the cosmopolitan elements in the southern Far East, as well as in Arctic Siberia, have been documented in the lowermost Anisian *Ussuriphyllites amurensis* Zone of the Karazin Cape Formation, which is characterised by the presence of the ammonite genera *Parasageceras*, *Ussiriphyllites*, *Megaphyllites*, *Leiophyllites*, *Ussurites*, *Paradanubites*,

Paracrocchordiceras, *Prohungarites*, *Arctohungarites*, *Salterites* and *Tropigastrites*. We interpret this assemblage as reflecting a warm and uniform climate for the beginning of the Anisian. The earliest Anisian sediments of Russian Island contain abundant shark teeth, which additionally confirm our assumption.

Early and mid-Triassic cephalopod assemblages, ammonoids of the BJKH superterrane and SR terrane areas, mainly exhibit Tethyan-type genera or cosmopolitan ones. This interpretation is in agreement with data from early Anisian brachiopods from South Primorye (*Spirigerellina* cf. *stoliczkai* (Bittner), *Lepismatina tsinghaiensis* (Yang and Yin) and *Costinorella zharnikovae* Dagys) and the early Ladinian (*Spirigerellina stoliczkai* (Bittner), *Schwagerispira* ex gr. *schwageri* (Bittner), *Plectoconcha variabilis* Dagys, *Piarorhynchella* cf. *trinodosi* (Bittner), *Costirhynchopsis tienchungensis* (Yang and Yin), *C. cf. breviplicata* (Yang and Yin), *Lepismatina* cf. *pauciplicata* (Yang and Yin) and *L. tsinghaiensis* (Yang and Yin) (Dagys 1974; Popov 2008). All of them, with the exception of representatives of the cosmopolitan genus *Lepismatina*, are common Tethyan elements.

On the contrary, during the late Ladinian, water temperatures of the Ussuri-Lesser Hingan basin apparently dropped sharply, based on the presence of the typical Boreal brachiopod genus *Pennspiriferina* that has been reported from the upper part of the upper Ladinian in South Primorye (Dagys 1965). The basin was apparently located within the warm-temperate climatic zone during late Ladinian time.

Carnian

The early Carnian floral assemblage of the Kiparisovo Village Formation of South Primorye (southern part of the BJKH superterrane) yields diverse cycadophytes (*Otozamites*, *Ctenozamites*, *Pseudocatenis*, *Anomozamites*, *Nilssonia* and *Taeniopteris*), ferns (*Todites*, *Clathropteris* and *Cladophlebis*), equisetaceans (*Equisetum* and *Neocalamites*), conifers (*Podozamites* and *Cycadocarpidium*) and ginkgoaleans (*Baiadera*; Shorochova 1997; Volynets & Shorochova 2006, 2007).

The investigated flora is derived from the coal-bearing Sadgorod Station Formation of South Primorye (southern part of the BJKH superterrane and the SR terrane) and consists of mainly bryophytes, ferns (*Dictyophyllum* and *Hausmannia*), ginkgoales (*Baiera*, *Glossophyllum* and *Desmophyllum*) czekanowskiales and diverse coniferales (*Podozamites* and *Pityophyllum*) (Shorochova 1997; Volynets & Shorochova 2006, 2007).

The great abundance of coniferales and ginkgoales and the presence of cycadophytes in the early Carnian sediments of the Kiparisovo Village Formation indicate a warm-temperate and arid climate at the beginning of the Carnian in South Primorye (Volynets & Shorochova 2006, 2007). However, the predominance of czekanowskiales and coniferales (Pinaceae), abundant large-stemmed *Neocalamites* and subordinate cycadophytes and ferns (Camptopteridaceae) in the late Carnian floral assemblage of the region are consistent with a warm-temperate and humid climate (the latter also in line with the commercial Sadgorod Station Formation coal resources).

Early Norian

The floral association from the early Norian Imalinov Creek Series of the SR terrane in South Primorye is characterised

by a high diversity of cycadophytes (*Pterophyllum*, *Nilssonia*, *Ctenis*, *Pseudoctenis* and *Taeniopteris*), an abundance of coniferales (*Elatocladus* and *Podosamites*), presence of rare coniferale Cheirolepidiaceae, as well as ferns, ginkgoales, czekanowskiales (*Phoenicopsis*, *Leptostrobus* and *Ixostrobus*), horsetails and pteridosperms (Volynets & Shorochova 2006; Volynets et al. 2006). This assemblage is indicative of a warm-temperate to subtropical and more or less humid climate; further supported by the presence of thin coal-beds in the Imalinov Creek Series (Volynets & Shorochova 2006, 2007; Volynets et al. 2006, 2008).

The rare early Norian ammonoids *Norosirenites* and *Yanotrachiceras* found in the SR terrane (Sergeevka River Basin) are typical Boreal genera; *Paratrachyceras* from the Levaya Antonovka River of the same terrane is, however, common for the Tethys (Zakharov 1997b). Brachiopods from the early to middle Norian (lower to middle part of the Peschanka River Formation of the southern part of the BJKH superterrane) include, e.g. *Laevithyris*, *Kolymithyris* and *Spondylospiriferina* and are typical Boreal elements, while the genus *Piarorhynchella* is common for the Tethys.

Based on plant, brachiopod and ammonoid data, we assume that South Primorye was located between the warm-temperate and subtropical climatic zones during the early Norian.

Middle Norian

The Amba flora, characterised by having the highest taxonomic diversity among the Triassic assemblages, was discovered in the middle Norian Amba River Formation of the southern part of the BJKH superterrane (Amba, Razdolnaya, Komarovka, Bystraya, Malinovka, Marevka and Bikin River basins; Fig. 1, loc. 25). In the middle Norian sediments czekanowskiales are replaced by ginkgoales *Sphenobaiera* and pteridosperms (*Thinnfeldia*, *Imania* and *Tudovakia*). Ferns and cycadophytes, including *Clathropteris*, *Camptopteris* and *Dictyophyllum*, *Pterophyllum*, *Williamsoniella*, *Ctenis*, *Nilssonia* and *Taeniopteris*, became the dominating elements (Shorochova 1997; Volynets & Shorochova 2006, 2007). This indicates that the coal-bearing Amba River Formation was formed in humid conditions in a tropical-subtropical climate.

Late Norian

All the known late Norian brachiopods (*Orientospira gregaria* (Dagys), *Viligella rotunda* (Tuchkov), *Kolymithyris kolymensis* (Moisseev), *Laballa suessi* (Moisseev), *Laevithyris rossochae* (Dagys), *Ochotathyris ochotica* (Dagys), *Spondylospiriferina* sp. and *Rhaetina pyriformis* (Suess) from the Perevoznaya River Formation of the south part of the BJKH superterrane, with the exception of the latter (Rhaetina – a Tethyan element), are typical representatives of the Boreal realm (Popov 2008). They are everywhere, in the large area of the Southern Russian Far East (Fig. 1, loc. 11, 14 and 15), associated with *Monotis ochotica* (Keyserling) and some other bivalves common for the Boreal realm. Data from both brachiopods and bivalves show that significant cooling took place at the very end of the Norian, when the analysed basin was located in the warm-temperate climatic zone (Boreal realm).

The Rhaetian portion of the Upper Triassic has not been investigated palaeontologically in either the BJKH superterrane

or the SR terrane, but only in the reef facies of the adjacent Taulhe terrane (Fig. 1, loc. 8; Punina 1999).

Palaeoclimatic evidence from Jurassic–Early Cretaceous fossils

Liassic

In the Hettangian–earliest Sinemurian floras, 39 taxa have been identified in an area including the Shitukhe River Formation of the Petrovka and Litovka River basins, SR terrane (Krassilov & Shorochova 1975; Volynets 2008) and a small portion of the lower part of the Petrovka River Formation of the Dushkino Passage, SR terrane (Konovalova & Markevich 2004). The macrofloral assemblage consists of ferns (*Cladophlebis*, 6 spp.; *Marattiopsis*, 1 sp.; *Phlebopteris*, 1 sp.; *Clathropteris*, 1 sp.; *Haussmannia*, 1 sp. and *Todites*, 1 sp.), cycadophytes (*Pterophyllum*, *Ctenis*, *Nilssonia* and *Taeniopteris*), coniferales (*Podozamites*, *Cycadocarpidium*, *Pityophyllum* and *Elatocladus*), ginkgoales (*Ginkgoites*, *Baiera* and *Sphenobaiera*), czekanowskiales (*Czekanowskia* and *Phoenicopsis*). The presence of Hettangian tropical-subtropical taxa such as *Clathropteris*, *Phlebopteris*, *Marattiopsis*, *Podozamites* and *Cycadocarpidium* and abundant *Ctenis* and *Pterophyllum* reflect paleoecological conditions close to the humid subtropics during the Hettangian to probably the earliest Sinemurian.

By contrast, early Sinemurian sediments of the Trudny Peninsula Formation in the Neizvestnaya Bay section, SR terrane are characterised by the presence of the sub-boreal and boreal ammonoid *Angulaticeras* (*Gydanoceras*) and the bivalve *Pseudomytiloides rassochaensis* Polubotko, common in the upper Sinemurian *Otapiria limaeformis* Beds of the Boreal realm (Sey & Kalacheva 1980; Konovalova & Markevich 2004).

Late Pliensbachian sediments of the Okrainka Village Formation (lower part) exposed in the Izvilika River basin, SR terrane, are characterised by the mixed Tethyan-Boreal ammonoid fauna. Among Tethyan ammonoids, *Arieticeras*, *Fontanelliceras* and *Paltarpites* can be recognised, while *Protogrammoceras* represents a cosmopolitan species. Ammonoid species, common for the Boreal realm include *Amaltheus stokesi* (Sowerby) in the mentioned assemblage. A similar, but more restricted assemblage (*Arieticeras*, *Fontanelliceras* and *Protogrammoceras*) has been documented in contemporaneous sediments of the Petrovka River Formation of the Litovka River, SR terrane (Sey & Kalacheva 1980).

Subtropical conditions are presumed also during the Toarcian in South Primorye based on the abundance of the thermophilous tritoniid bivalve *Vaugonia* in sediments of the Komarovka River and Bonivur Creek formations of the Komarovka River basin (Konovalova & Markevich 2004) and the occurrence of the Tethyan ammonoid *Arieticeras* in coeval deposits of the Izvilinka River, both in the SR terrane (Sey & Kalacheva 1980).

Aalenian to Bathonian

Data on the Aalenian to Bathonian fossil flora of the Alexeevka River (BJKH superterrane), Ananyevka River (upper part) and Monakino Village (lower part) series are accounted for in Volynets (1999, 2008). The macrofloral assemblage is represented by 81 taxa (Volynets 2008), represented by; ferns 28 spp. (*Sphenopteris*, *Cladophlebis*, *Klukia*, *Cyathea*,

Osmundopsis, Phlebopteris, Ruffordia, Dicksonia, Coniopteris, Onychiopsis, Adiantopteris and Acrostichopteris); coniferales, 17 spp. (*Podozamites, Araucarites, Cunninghamia, Pityophyllum, Brachiphyllum, Elatocladus, Coniferites* and *Conites*); cycadophytes, 17 spp. (*Otozamites, Dictyozamites, Cycadolepis, Anomozamites, Ptilophyllum, Zamites, Nilssonia* and *Pseudocatenis*); pteridosperms, a single species of *Thinnfeldia*; Caytoniales, four species of *Caytonia* and *Sagenopteris*; ginkgoales, two species of *Baiera* and *Pseudotorellia*; czekanowskiales, three species of genera *Czekanowskia* and *Leptostrobus*; and some others.

The macrofloral assemblages are indicative of warm and medium humid paleoecological conditions for the Bathonian of the BJKH superterrane. Additional paleoclimatological evidence for a warm-temperate to subtropical Middle Jurassic in this area is provided by the presence of the Aalenian–Bajocian Boreal inoceramid bivalves *Retroceramus jurensis* (Koschekina), *Retroceramus* cf. *lucifer* (Eichwald) and *Retroceramus* aff. *elegans* (Koschekina) (Konovalova & Markevich 2004) in the Bonivur Creek Formation of Strelkovaya Mouth, SR terrane, in association with the cosmopolitan ammonites (*Holcophylloceras* and *Lytoceras*) and rare Tethyan tritoniid bivalves (*Vaugonia*) (Sey & Kalacheva 1980, 1981; Konovalova & Markevich 2004).

Upper Jurassic to lowermost Cretaceous

Callovian to Kimmeridgian marine faunas from South Primorye are absent with only a continental regime during the Callovian, and intensive erosion starting from the Oxfordian in this region; only restricted evidence on Callovian plant fossils (*Pseudocycas* sp.) has been reported (Markevich et al. 2008). The Oxfordian–Kimmeridgian part of the marine Dongrong Formation in the neighbour area of northeast China is characterised by the Boreal *Buchia* cf. *concentrica*-*B. tenuistriata* assemblage (Sha 2007).

There is no palaeontological evidence from the lower part of the lower Tithonian portion of the Chigan Cape Formation exposed at the eastern Ussuri Gulf, SR terrane. However, the lower–upper Tithonian part of the Dongrong Formation in eastern Heilongjiang Province, northeast China is characterised by the *Buchia* cf. *mosquensis*-*B. cf. rugosa* assemblage (Sha 2007). The middle Tithonian part of the Chigan Cape Formation in South Primorye is characterised by mixed Boreal–Tethyan bivalve fossils among which are buchias, common for the Boreal realm (*Buchia mosquensis* (Buch), *B. rugosa* (Fisch.) and others); thermophilose tritoniid bivalves (*Jotrigonia*) are dominant. This part additionally yields ammonoids regarded as Tethyan taxa (*Semiformiceras*, *Glochiceras*?, *Pseudolissoceras*, *Haploceras*, *Parapallasiceras*, *Sublithacoceras*, *Coronoceras*, etc.) and cosmopolitan (*Lithacoceras*, *Subplanitoides*, “*Partschiceras*”, *Aulacosphinctoides*, *Torquatishinctes*?, *Aulacosphinctes*, *Himalayites*, *Holcophylloceras*, *Virgatosphinctes*, *Subplanites* and “*Metahaploceras*”) (Sey & Kalacheva 1980, 1981; Konovalova & Markevich 2004).

Presumed cooler conditions prevailed in South Primorye at the very end of the Jurassic, because in the latest Tithonian portion of the Chigan Cape Formation only *Buchia* “*piachii*” Gabb, *B. fischeriana* (Orbigny), and *B. ex gr. fischeriana* (Orbigny), common for the Boreal realm have been found (Konovalova & Markevich 2004). A similar Boreal assemblage (*Buchia russiensis*-*B. fischeriana*) has been recently discovered in the

lower part of the Dong’anchen Formation of the adjacent area (eastern Heilongjiang Province, northeastern China; Sha 2007).

However, this was followed by warmer, more likely subtropical conditions at the beginning of the Cretaceous, because the lower Berriasian portion of the Chigan Cape Formation yields only Tethyan (*Pseudosubplanites* and *Dalmasiceras*) and cosmopolitan (*Berriasella*) cephalopods (Zakharov et al. 1996; Sey & Kalacheva 1999).

Carbon-isotope composition of Permian–Triassic organogenic carbonates

Some variation in the $^{13}\text{C}/^{12}\text{C}$ ratio in marine organogenic carbonates is related to variations of different environmental factors, such as the carbon cycle balance, upwelling and primary productivity, and therefore it is usually difficult to separate the effect of each of these factors, especially for deep-water conditions. However, when worldwide carbon isotope shifts are observed only in shallow-water carbonates, they are generally attributed to change in primary productivity (Alcalá-Herrara et al. 1992). Contrary to Isozaki’s et al. (2007) conclusion, our own results (Zakharov et al. 2000, 2001; Y.D. Zakharov et al. 2005) show that Permian positive carbon-isotopic anomalies seem to be contemporaneous with climatic optima and perhaps with transgressions. We personally have recorded the abnormally high $\delta^{13}\text{C}$ values in organogenic carbonates obtained from 22 levels of the Kungurian, Roadian, Wordian, Capitanian, Wuchiapingian, Changhsingian, Induan, Olenekian and Anisian of different regions of the former USSR, including the Russian Far East (Zakharov & Biakov 2008, Fig. 32). Recently, we obtained additional information on isotopic composition of organogenic carbonates from the lower Capitanian (*Parafusulina stricta* Zone) of the Barabash area, Induan (*Abrekia* beds) of Abrek Bay (Fig. 1, loc. 33), and the lower Ladinian (*Sputnik* Formation) of the Atlasov Cape area (Fig. 1, loc. 23). The positive carbon-isotopic anomaly discovered in the *Tirolites-Amphistephanites* Zone in Russian Island (Zakharov et al. 2001, Fig. 14) is interpreted by us as connected with the middle Olenekian transgression and thermal optimum. Positive anomalies from the same level were discovered also in the North Caucasus (Belya–Rufabgo, Kapustina and Svinyachia; Zakharov et al. 2001, Figs. 9 and 10) and South China (Tong & Zhao 2005). Tong & Zhao (2005) have remarked that the above-mentioned middle Olenekian event was followed by a gentle decrease in $\delta^{13}\text{C}$ values, which might have resulted from the local tectonic setting combined with a regression in the region.

Figs. 3–6 (see $\delta^{13}\text{C}$ anomaly column) show the highly irregular location of the positive carbon-isotopic anomalies discovered within the Sakmarian–Rhaetian interval. They are located most frequently in the upper Kungurian, upper Wordian, Capitanian, Wuchiapingian and also in the Induan–lowest Anisian interval. By contrast, the Sakmarian–middle Kungurian, Roadian–middle Wordian, middle–upper Changhsingian intervals and major parts of the Middle and Upper Triassic are characterised by comparatively rarer positive carbon-isotopic anomalies.

Correlation of oxygen-isotope (palaeotemperature) events

Gzhelian to middle Kungurian interval

Comparatively cool temperature conditions calculated for the latest Carboniferous, Gzhelian, of the South Urals (Zakharov et al.

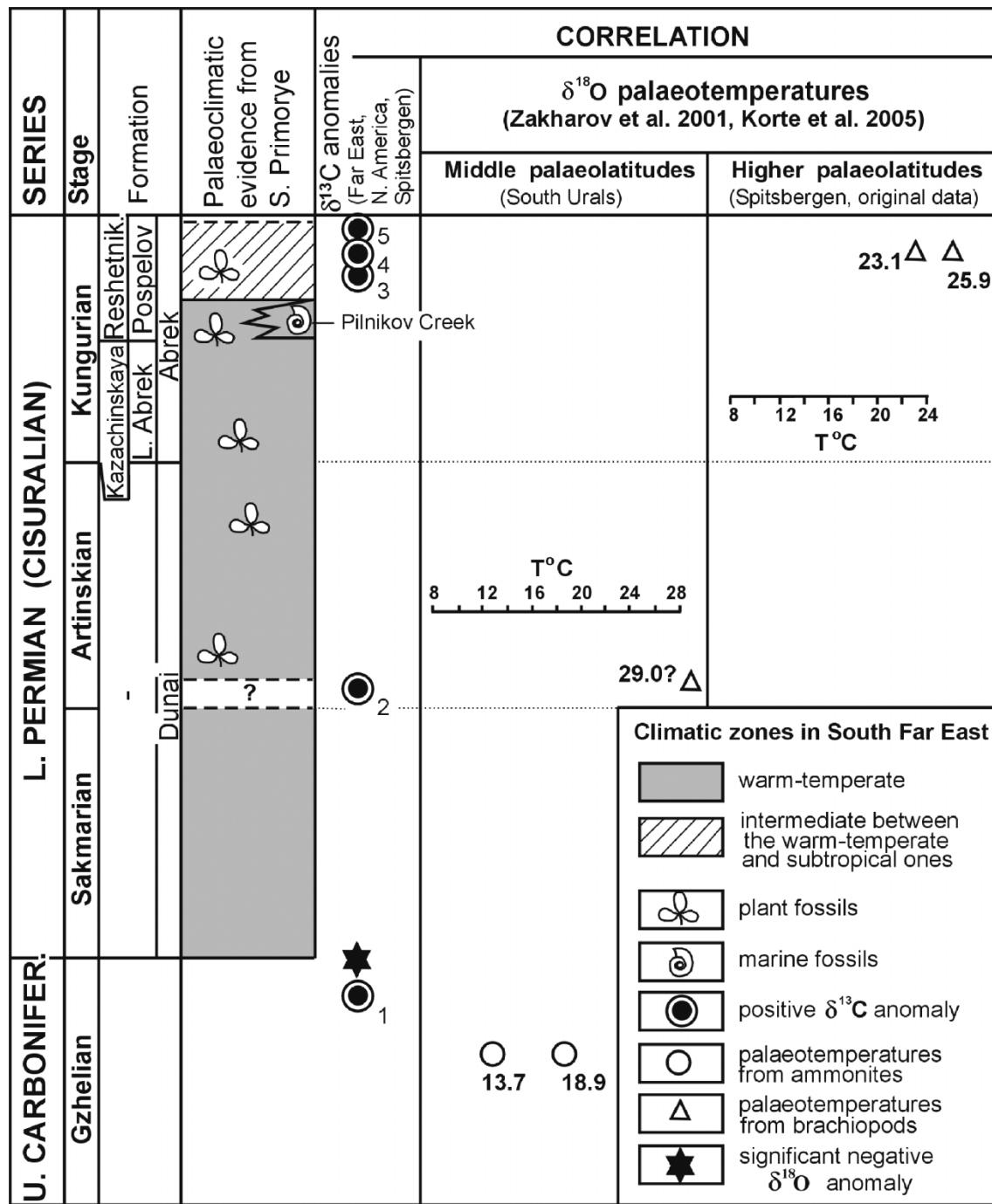


Fig. 3. Correlation of the Lower Permian of the southern Russian Far East using available oxygen and carbon-isotope data. Positive carbon-isotopic anomalies: 1, Gzhelian (Grossman et al. 1991); 2, Early Permian (Artinskian) (Rao 1988; Zakharov et al. 1997b); 3, late Kungurian (Korte et al. 2005a, 2005b); 4–5, late and the latest Kungurian (original data from Spitsbergen and the northern Russian Far East).

2001; 13.7–18.9°C) (Fig. 3) continued in middle latitudes mainly until the late Kungurian, with the potential exception of some Artinskian intervals (Korte et al. 2005a). This is coincident with the development of Boreal floral associations of the Dunai and Lower Abrek formations in South Primorye, as well as the Boreal marine assemblage of middle Kungurian Pilnikov Beds in the same area.

Late Kungurian interval

During the excursion on the Festingen section in Spitsbergen (Fig. 1), organised for the Boreal Triassic Conference

(Longyearbyen, August 2006), one of the authors (Y. Zakharov) collected a few brachiopod (athyridid and *Rhombospirifer?* sp.) shells with excellently preserved microstructure (Fig. 7) from the Vøringen Member of the Kungurian to Capitanian? Wuchiapingian Tempelfjorden Group exposed at Starostin Cape (Worsley 2006). The age of the brachiopod shells analysed is considered to be late Kungurian (G.V. Kotlyar, personal communication).

The excellently-preserved fibres of the secondary layer, combined with Mg (1400–3300 mg/kg) and Na

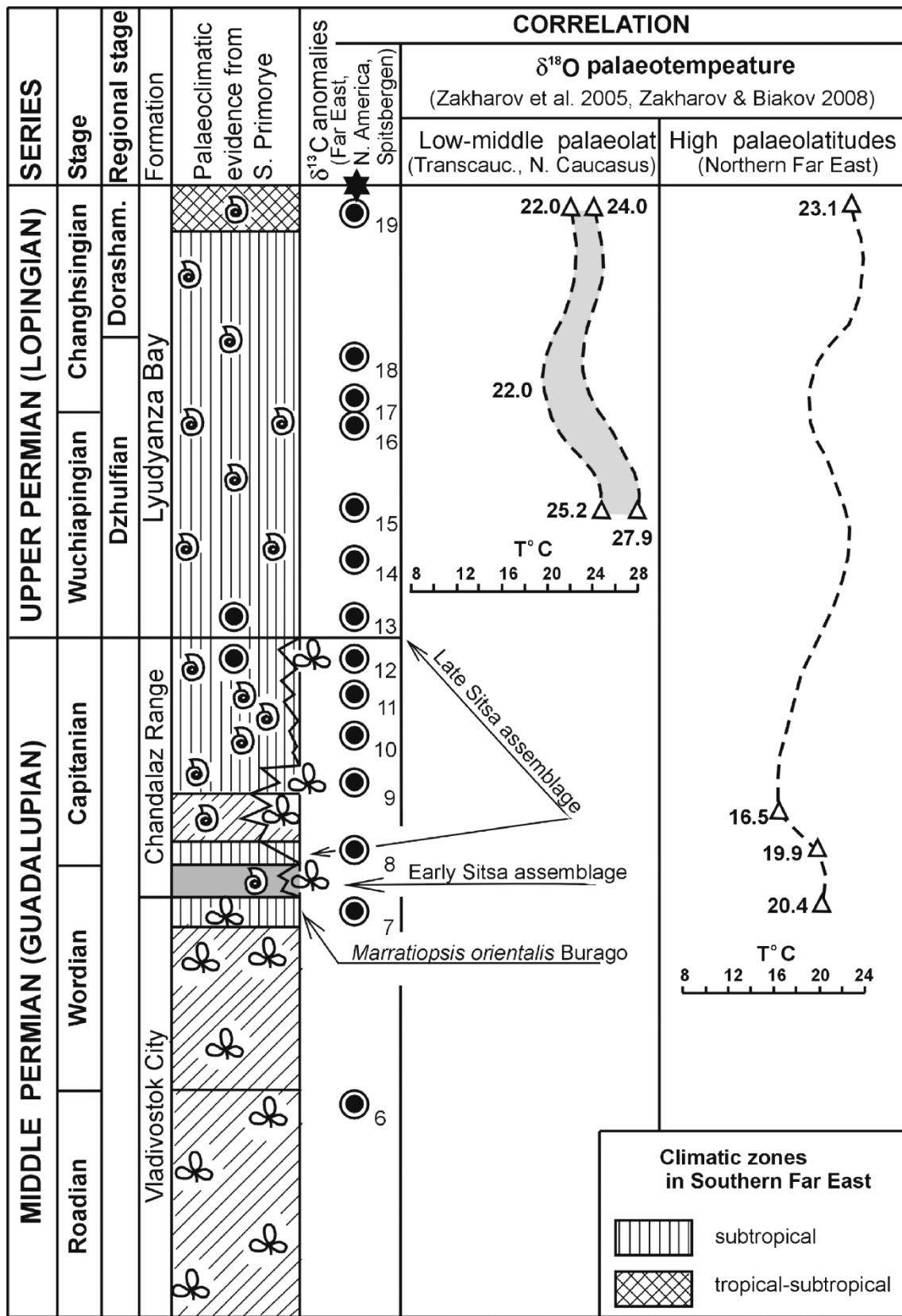


Fig. 4. Correlation of Middle–Upper Permian of the southern Russian Far East with available oxygen and carbon-isotope data. Positive carbon-isotopic anomalies: 6, late Roadian (original data from northern Russian Far East); 7, late Wordian (Korte et al. 2005a, 2005b and original data from northern Russian Far East); 8–12, Capitanian (original data from northern Russian Far East); 13–15, Early Wuchiapingian (Y.D. Zakharov et al. 2005 and original data from northern Russian Far East); 16, late Wuchiapingian (Y.D. Zakharov et al. 2005); 17–19, Changhsingian (Y.D. Zakharov et al. 2005 and original data from northern Russian Far East). Additional designations as in Fig. 3.

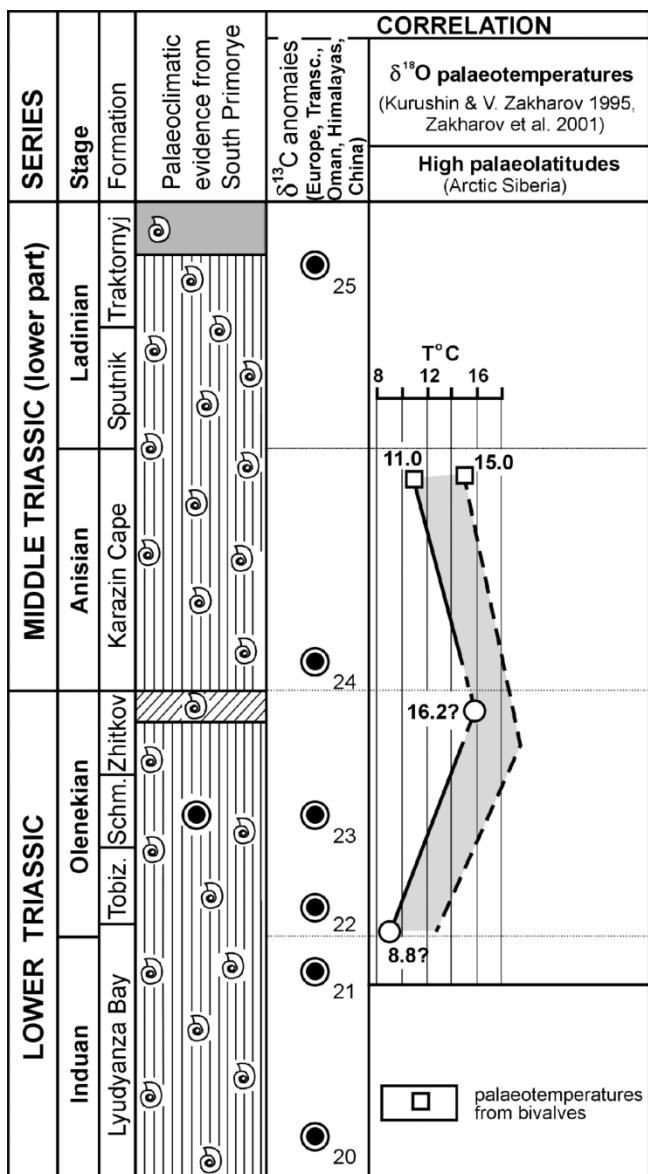


Fig. 5. Correlation of Lower–Middle Triassic of the southern Russian Far East with the available oxygen and carbon-isotope data. Positive carbon-isotopic anomalies: 20, early Induan (Y.D. Zakharov et al. 2005; Richoz 2006); 21, late Induan (Altudorei 1999; Zakharov et al. 2000); 22, early Olenekian (Richoz 2006); 23, middle Olenekian (Altudorei 1999; Zakharov et al. 2000; Payne et al. 2004; Galfetti et al. 2007; Horacek et al. 2007); 24, early Anisian (Altudorei 1999; Zakharov et al. 2000); 25, late Ladinian (Altudorei 1999; Zakharov et al. 2000). Additional designations as in Figs. 3 and 4.

(2200–2900 mg/kg) content (Fig. 8), confirm the unusually good preservation of the investigated shell because these concentrations are within the range of modern terebratulid brachiopods (Brand et al. 2003). A relatively high value for Fe (10,900 mg/kg) was found in the carbonates by the dispersion energy X-ray spectrometer at only one point (Fig. 7D, point 2, Fig. 8, spectrum 4) out of 32, indicating only local diagenetic alteration.

The oxygen isotope data derived from the excellently preserved parts of the brachiopod shells display a range of values from -3.1 to -2.6‰ (V–PDB), showing shallow-water

palaeotemperatures not lower than 23.1 – 25.9°C (Table 1). Incidentally, we would like to note that abnormally high $\delta^{13}\text{C}$ values (6.5 – 7.2‰) were discovered in all five samples collected from the best preserved areas of the brachiopod shells, which might have been biased by high-biological productivity of the seas of that time. If such high temperatures existed in the higher latitude Spitsbergen area, it was caused by short-term warming at the very end of the Cisuralian, which agrees with palaeobotanical records from the upper part of the Pospelov Cape Formation in South Primorye, but seems to be in contradiction with the oxygen-isotope data from the middle Kungurian to middle Wordian of the Sydney Basin in Australia (Korte et al. 2008), which reflects a cooling phase during the late Kungurian to Roadian in the Southern Hemisphere. Correlation of this event is still uncertain.

Roadian to Capitanian interval

We have recently calculated Wordian to Capitanian palaeotemperatures from oxygen-isotopic composition of well-preserved brachiopods, collected from the late Wordian upper Omolon Formation (Y.D. Zakharov et al. 2005) and early Capitanian lower Gzhiga Formation of the Gzhiga–Omolon area, Northern Russian Far East (Fig. 1). Comparatively high temperatures during the late Wordian (20.4°C , Fig. 4) and the main trend for temperature drop in the early Capitanian (from 19 to 16.5°C) (Zakharov & Biakov 2008) were documented for this high-latitude area, which seems to be in accordance with the floristic data (Fig. 4) from the Roadian–Wordian Vladivostok Formation, including late Wordian–Capitanian *Marratiopsis orientalis* Beds, and latest Wordian–Capitanian Sitsa Formation (Kotlyar et al. 1989) in South Primorye. However, the major part of Capitanian marine faunas from the southern Russian Far East is thermophilous (Kotlyar et al. 1997, 2006), in contrast with the latest Wordian fauna from the *Monodiexodina sutchanica*–*Metadolliolina dutkevichi* Zone.

Wuchiapingian to Changhsingian interval

Two maxima in palaeowater temperatures seem to occur during the Late Permian, that is during the early Wuchiapingian (with 25.2 – 27.9°C calculated for middle palaeolatitudes of Transcaucasia (Zakharov et al. 2001)), and the late Changhsingian (present in both middle and high palaeolatitudes and characterised by somewhat lower palaeotemperatures, 22 – 24.2 and 23.1°C , respectively (Y.D. Zakharov et al. 2005)), which is in agreement with the data from thermophilous marine faunas from South Primorye (Fig. 4). Very high palaeotemperatures for the Lopingian-aged Joulfa section in Iran (23 – 34°C) and the Meishan section in South China (26 – 32°C) were similarly obtained by Korte et al. (2005a). However, some of these data seem to be in disagreement with Beauchamp and Baud's (2002) hypothesis, according to which the northwest margin of Pangaea was under the influence of cold to very cold waters for nearly 30 m.y. in the post-Sakmarian Permian, the time of chert accumulation in this area.

Permian–Triassic boundary (PTB) transition

Many hypotheses for processes to explain PTB events have been offered, recently reviewed by Berner (2002), Kidder & Worsley (2004), Richoz (2006) and Vajda & McLoughlin (2007); a question that remains is the temperature impact.

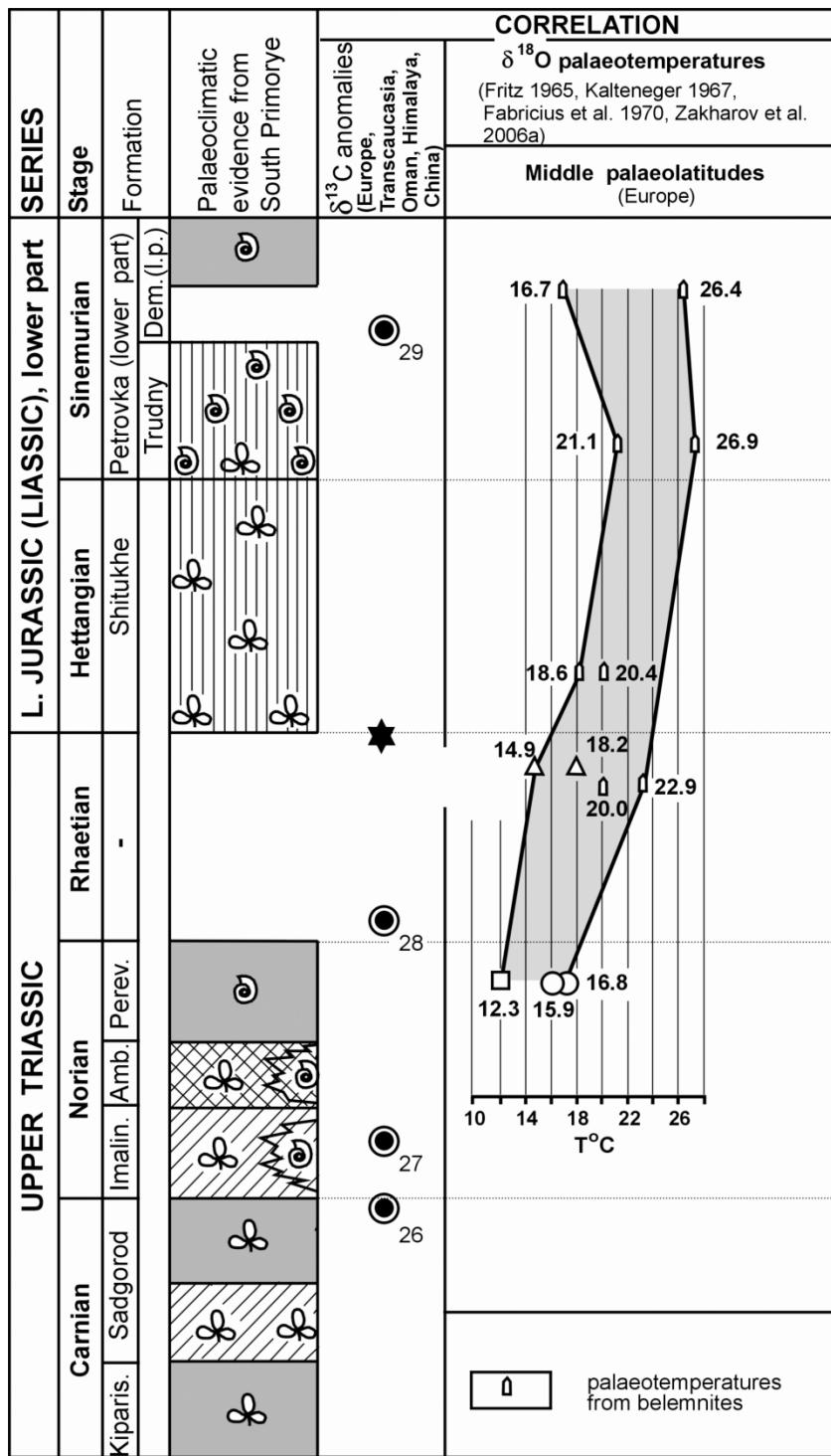


Fig. 6. Correlation of Upper Triassic to lower Liassic of the southern Russian Far East with the available oxygen and carbon-isotope data. Positive carbon-isotopic anomalies: 26, late Carnian (Altudorei 1999; Zakharov et al. 2000); 27, early Norian (Zakharov et al. 2000); 28, early Rhaetian (Morante & Hallam 1996); 29, middle Sinemurian (Jenkyns et al. 2002). Additional designations as in Figs. 3–5.

There is no information on isotopic palaeo-seawater temperatures for PTB beds (no well-preserved fossils, suitable for oxygen-isotopic investigation, have been discovered within this interval). However, information on the main trends in temperature change has been obtained, using the Ca–Mg ratio method for carbonate sequences (Zakharov et al. 2001). We interpret the lowest magnesium content in the uppermost Permian carbonates of Transcaucasia as a short-term fall of palaeo-seawater temperature at the very end of the Changhsingian, following the thermal maximum of the late

Changhsingian *Paratirolites kittli* Zone, and particularly at the beginning of the Induan (FAD *Hindeodus parvus*), just after a significant negative carbon-isotope excursion (Baud et al. 1989; Y.D. Zakharov et al. 2005). It is known that prominent negative carbon-isotope excursions along with the Permo-Triassic one, mentioned above (Baud et al. 1989; Magaritz 1989; Holser et al. 1991; Yin & Zhang 1996; Zakharov et al. 2001; Berner 2002), were discovered in the Carboniferous-Permian (Magaritz 1989), Triassic-Jurassic (Guex et al. 2004; Kuerschner et al. 2007) and Jurassic-Cretaceous (Guex et al. 2004) boundary

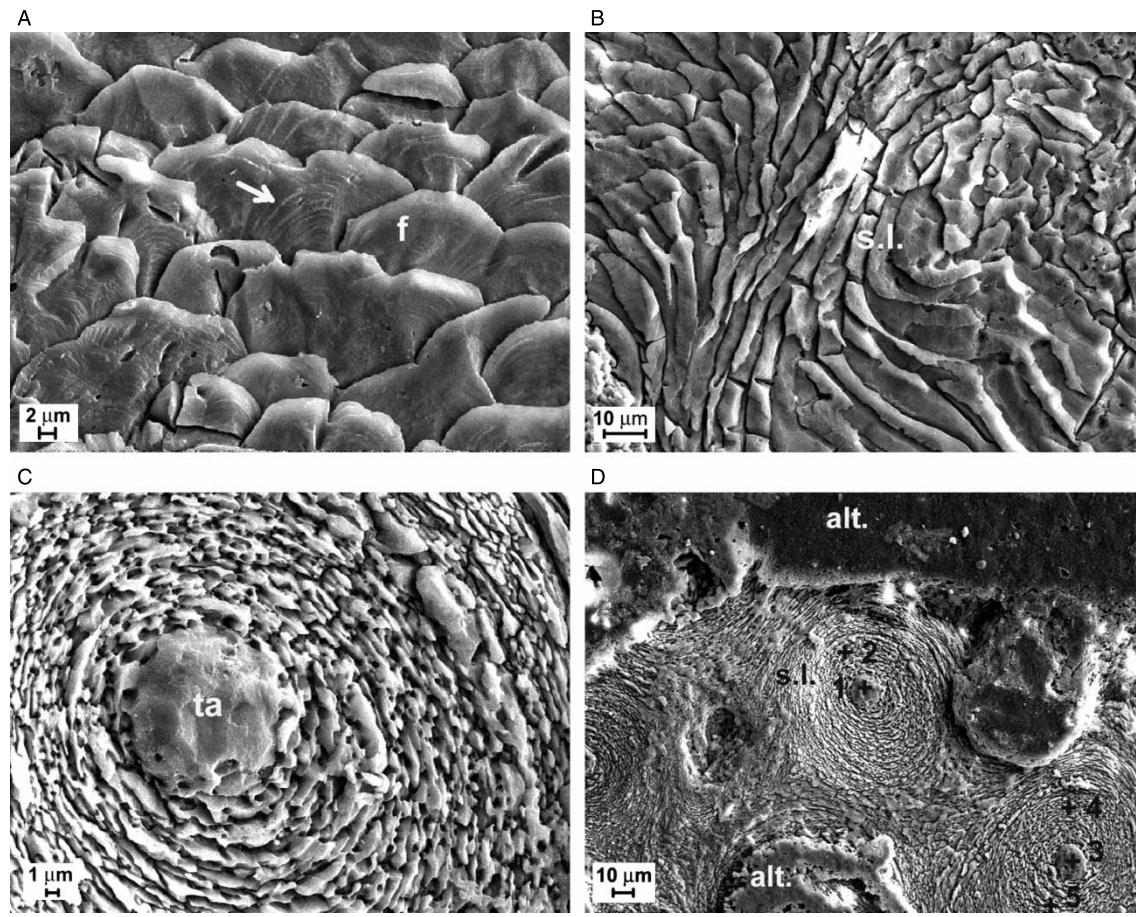


Fig. 7. Microphotograph of the shell structure in late Kungurian brachiopods from the Kapp Starostin Formation (Vøringen Member) in West Spitsbergen: A. aptynid brachiopod, sample Sp2-1; fibres of the secondary layer (shell transect, slightly oblique section of the pedicle valve); the arrow indicates an area with clear daily growth lines, showing their excellent preservation. B–D. *Rhombospirifer?* sp., sample Sp1-1 – pseudopunctae-like structure of the secondary layer (shell transect, slightly oblique section of the brachial valve) and some diagenetically altered parcels. Abbreviations: s.l., secondary layer; f, fibre of the secondary layer, ta, taleola (pseudopuncta), alt., siliceous parcel (combined with Al (4100–10,100 mg/kg), Fe (2200 mg/kg), Cl (15,700 mg/kg), Yb (700 mg/kg) and K (2100 mg/kg); location of some geochemical spectra (1–5) indicated by crosses.

transitions, which, following Wignall & Twitchett (2002) and Kidder & Worsley (2004), were mainly the result of volcanic activity and related methane poisoning.

Another possible reason to explain the fact of the lowest magnesium content in the uppermost Permian carbonates of Transcaucasia seems to be a fundamental change in PTB sedimentation, noted by Baud et al. (2007). However, Kozur (2007) discovered a cool-water conodont fauna in the *Pleuronodoceras occidentale*-*Xenodiscus jubilaearis* Zone of Transcaucasia and Iran and volcanic microsphaerulites at this level in Iran and the Germanic Basin. These palaeontological and volcanological patterns are consistent with our version.

Induan to Ladinian interval

According to our oxygen-isotope temperature determinations (Zakharov et al. 1999a), late Olenekian and late Anisian climates in Arctic Siberia seem to be about 7.4 and 6.6°C warmer, respectively, than early Olenekian temperatures (Fig. 5). The calculated middle to late Anisian isotopic palaeo-seawater temperatures of about 15°C for Arctic Siberia (Kurushin &

Zakharov 1995; Zakharov et al. 1999a), approach those of the late Olenekian (about 16.2°C; Zakharov et al. 1999a).

No oxygen-isotopic palaeotemperature data have been obtained for other levels of the Lower–Middle Triassic, including the Ladinian. Furthermore, the temperatures estimated now from oxygen isotopic analyses on Lower to Middle Triassic biogenic carbonates on the whole are preliminary and restricted only to the Boreal realm, and therefore it seems to be especially difficult to use this information for global correlation.

Carnian to Rhaetian interval

There is no information on oxygen-isotopic composition of well-preserved Carnian fossils. Recalculating Fabricius et al.'s (1970) oxygen-isotopic data from late Norian invertebrate shells of the northern Alps shows comparatively low palaeotemperatures: 15.9–16.8°C from cephalopods *Archites* and *Nautilidae*, and 12.3°C from the bivalve *Halobia* (Fig. 6). The revised oxygen-isotopic palaeotemperatures for aragonitic shells here, and below, were obtained by us using the method proposed by Grossman & Ku (1986); for calcitic shells, as was mentioned

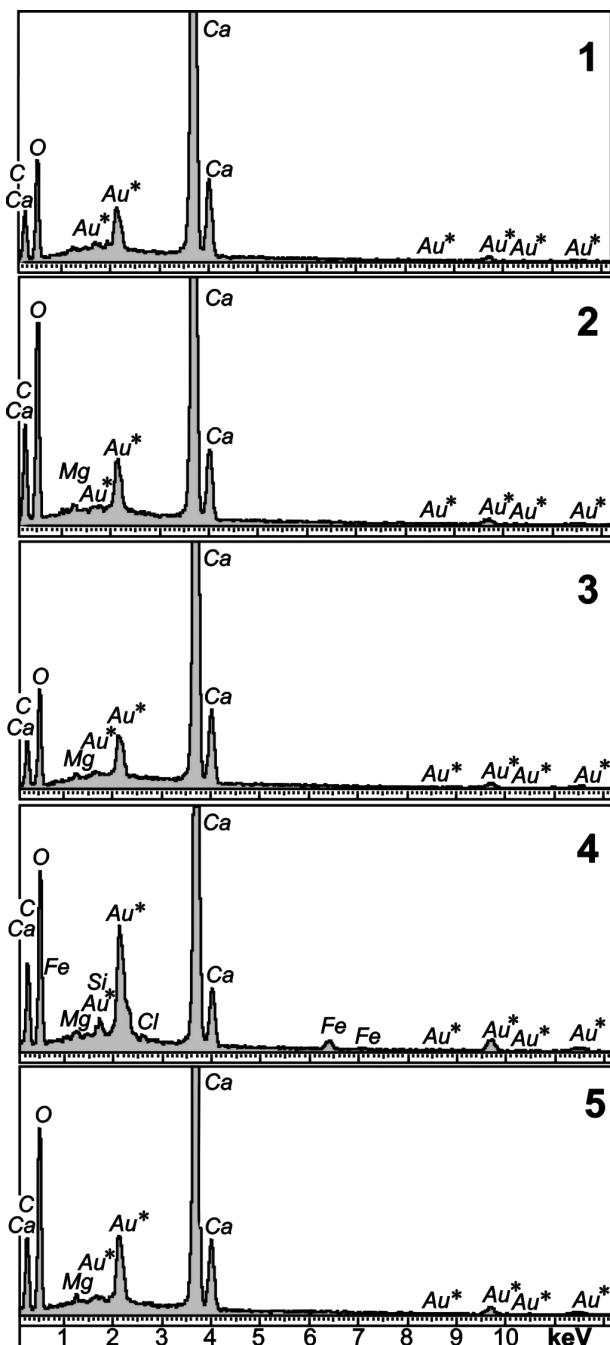


Fig. 8. Geochemical profiles from shell of *Rhombospirifer?* sp., sample Sp1-1. Location of the spectra 1–5 are shown in Fig. 7D. The asterisk near Au indicates that this Au value should not be taken into account because the surface of the sample was covered by gold before scanning. Figure 7C, D cross-sections of pseudopunctae-like structure of secondary layer. Designations as in Figs. 3–6.

above, we used the form proposed by Anderson & Arthur (1983). Data on comparatively low late Norian palaeotemperatures are in good agreement with evidence from South Primorye concerning latitudinal reduction of the tropical–subtropical climatic zone during the late Norian. Somewhat higher credible palaeotemperatures for the Alps were recalculated from data on the late Rhaetian brachiopods (14.9–18.2°C, Fabricius et al. 1970) and some well-preserved belemnites (16.6–22.9°C;

Kaltenegger 1967), which is in accordance with the palaeofloral records from Triassic–Jurassic boundary strata in Greenland (Hesselbo et al. 2003a).

Hettangian to Sinemurian interval

The Jurassic is generally characterised as a period with greenhouse conditions (Vajda & Wigforss-Lange 2009, Mehlqvist et al. 2009, this volume). Again, using Fabricius et al.'s (1970) oxygen-isotopic data from Hettangian belemnites of the Alps we can see comparatively high-recalculated palaeotemperatures (> 18.6–20.4°C), similar to those obtained for the late Rhaetian (Kaltenegger 1967) in this area (Fig. 6).

Contradictory isotopic information has been obtained for Sinemurian palaeotemperatures. High palaeotemperatures came from ammonoids in Europe: those from the lower Sinemurian show palaeotemperatures of 26.9°C and those from the upper Sinemurian 26.4°C (Fritz 1965; Zakharov et al. 2006b). However, recalculated palaeotemperatures, obtained from a Sinemurian brachiopod (15.1°C) and belemnites (13.1–17.4°C) from the Alps are significantly lower, showing possible cooling in some parts of the Sinemurian (Fabricius et al. 1970). Palaeotemperature data, obtained from Sinemurian ammonoid (Zakharov et al. 2006b), brachiopod and belemnite (Fabricius et al. 1970) faunas from Europe are consistent with palaeobotanical and palaeozoological evidence from South Primorye, showing the expansion of the tropical–subtropical climatic zone during the Hettangian to early Sinemurian. Short-term cooling, recognised from palaeontological data for the very end of the Sinemurian in South Primorye has not yet been confirmed by oxygen-isotopic data (because of a lack of information on this topic).

Pliensbachian to Toarcian interval

Our recent isotopic data from Liassic ammonoids of Europe (Zakharov et al. 2006b) show a drop in temperature from the early Pliensbachian (23.1–24.2°C) to the late Pliensbachian (20.7°C), using aragonitic ammonoid shells from England and Germany, respectively (Zakharov et al. 2006b). Similar evidence has been obtained earlier from European belemnites: 15–27°C for the early Pliensbachian (Fritz 1965; Fabricius et al. 1970; Rosales et al. 2004) and 10–22°C for the late Pliensbachian (Fabricius et al. 1970; Rosales et al. 2004). A distinct Toarcian climatic optimum (20–28.8°C) has been recorded on the basis of isotopic data from Western Europe (Pearson 1978; Rosales et al. 2004) (Fig. 9). Palaeozoological records on latitudinal reduction of the tropical–subtropical climatic zone in the Russian Far East in the late Pliensbachian, when mixed Tethyan–Boreal ammonoid assemblages occurred in South Primorye, and subsequent latitudinal expansion at least during the late Toarcian, when abundant subtropical trigoniids appeared there are in accordance with the isotopic palaeotemperature estimations given above.

Aalenian to Bathonian interval

Late Bajocian—the earliest Bathonian palaeotemperatures are comparatively low for middle latitudes of western Europe (13.2–23.0°C), Greenland (19.1–20.3°C) and high-latitude Alaska (15.9°C) (Teiss & Naidin 1973). Higher palaeotemperatures for the Bajocian were calculated only for South America (19.7–28.6°C, Teiss & Naidin 1973).

Table 1. Carbon and oxygen isotope analyses of calcitic brachiopod and bivalve shells from the Permian of the northern Russian Far East and Spitsbergen.

$\delta^{13}\text{C}$ anomaly number (index for NE Russia)	Sample	Locality	Species	Stage	Zone	Formation	Location	Colour	Degree of the shell structure safety	$\delta^{13}\text{C}$ (PDB) (‰)	$\delta^{18}\text{O}$ (PDB) (‰)	T (°C)
10c-1	18 (XVI)	Taskan River, left bank, above Vesely Creek mouth	<i>Maitaia</i> sp.	Changhsingian	<i>Inoceramus</i> <i>costatum</i>	Rogachev	Prismatic layer (5 mm thick)	Dark grey	Well preserved	3.2	-13.7	-
10c	-	Taskan River, left bank, above Vesely Creek mouth	<i>Intomodesma</i> sp.	Changhsingian	<i>Inoceramus</i> <i>costatum</i>	Rogachev	Prismatic layer (6 mm thick)	Light grey and grey	Well preserved	1.1	-9.6	-
10b	13 (XI)	Taskan River, left bank, above Vesely Creek mouth	<i>Maitaia</i> cf <i>tenkensis</i> Biakov.	Wuchiapingian- Changhsingian	<i>Maitaia</i> <i>tenkensis</i>	Rogachev	Prismatic layer (1.6 mm thick)	Grey	Well preserved	4.2	-10.9	-
8-2a-1	12 (X)	Levy Vodopadnyj Creek, Khivach River basin	Athyridid brachiopod	Upper–upper Capitanian	<i>Maitaia</i> <i>tenkensis</i>	Lower Khivach	Middle area of the ventral shell	Light grey	Excellent preserved	5.5	-3.1	25.4?
8-2a	12 (X)	Levy Vodopadnyj Creek, Khivach River basin	<i>Maitaia</i> sp. indet.	Upper–upper Capitanian	<i>Maitaia bella</i>	Lower Khivach	Prismatic layer (1 mm thick)	Dark grey and grey	Well preserved	3.9	3.9	-
10a-6	12 (X)	Taskan River, left bank, above Vesely Creek mouth	<i>Maitaia</i> sp. indet.	Upper–upper Capitanian	<i>Maitaia bella</i>	Rogachev	Prismatic layer (1–1.2 mm thick)	Light grey and grey	Well preserved	4.6	10.5	-
10a-5	-	Taskan River, left bank, above Vesely Creek mouth	<i>Maitaia</i> sp. indet.	Upper–upper Capitanian	<i>Maitaia bella</i>	Rogachev	Middle part of the shell (1 mm thick)	Dark grey and grey	Well preserved	2.9	-10.3	-
10a-4	11 (IX)	Taskan River, left bank, above Vesely Creek mouth	<i>Maitaia</i> sp. indet.	Middle–upper Capitanian	<i>Maitaia bella</i>	Rogachev	Prismatic layer (2 mm thick)	Dark grey and grey	Well preserved	3.6	-13.0	-
10a-3	-	Taskan River, left bank, above Vesely Creek mouth	<i>Maitaia</i> sp. indet.	Lower–upper Capitanian	<i>Maitaia bella</i>	Rogachev	Prismatic layer (9 mm thick)	Dark grey and grey	Well preserved	0.8	-13.2	-
10a-2	10 (VIII)	Taskan River, left bank, above Vesely Creek mouth	<i>Maitaia bella</i> Biakov	Lower–upper Capitanian	<i>Maitaia bella</i>	Rogachev	Hing margin	Grey	Well preserved	3.5	-8.9	-
10a	-	Taskan River, left bank, above Vesely Creek mouth	<i>Maitaia bella</i> Biakov	Upper–lower Capitanian	<i>Maitaia bella</i>	Rogachev	Prismatic layer (3 mm thick)	Grey	Well preserved	2.8	-14.30	-
10a-1	9 (VII)	Taskan River, left bank, above Vesely Creek mouth	<i>Maitaia</i> sp. indet.	Middle–lower Capitanian	<i>Maitaia bella</i>	Rogachev	Area of ventral valve	Dark grey and grey	Well preserved	3.5	-12.9	-
31-16	-	Russkaya-Omolons- kaya River	<i>Neospirifer</i> sp.	Lowermost Capitanian	<i>Maitaia bella</i>	Gizhiga	Hinge margin of the ventral valve	Brownish light grey	Excellent preserved	5.0	-1.1	16.5
31-15	-	Russkaya-Omolons- kaya River	<i>Merismopteria</i> ex gr. <i>macroptera</i> (Morris)	Lowermost Capitanian	<i>Maitaia bella</i>	Gizhiga	Prismatic layer (1.5 mm thick)	Dark grey	Excellent preserved	5.5	-1.7	19.0
10	8 (VI)	Taskan River, left bank, above Vesely Creek mouth	<i>Maitaia</i> ? sp. indet.	Upper–upper Wordian	<i>Intomodes-ma</i> <i>costatum</i>	Turin	Prismatic layer (3–4 mm thick)	Light grey and grey	Well preserved	5.0	-13.6	-

Table 1. (Contd.)

Sample	$\delta^{13}\text{C}$ anomaly number (index for NE Russia)	Locality	Species	Stage	Zone	Formation	Location	Colour	Degree of the shell structure safety	$\delta^{13}\text{C}$ (PDB) (‰)	$\delta^{18}\text{O}$ (PDB) (‰)	T (°C)
6e	8 (VI)	Taskan River, right bank, Kharius	<i>Maitiaia?</i> sp. indet.	Uppermost Wordian	<i>Kolymia multiformis</i>	Turin	Prismatic layer (3–4 mm thick)	Light grey and grey	Well preserved	4.8	–	–
6d	–	Taskan River, right bank, Kharius	<i>Maitiaia?</i> sp. indet.	Upper–upper Wordian	<i>Kolymia multiformis</i>	Turin	Prismatic layer (3–4 mm thick)	Grey and dark grey	Well preserved	4.5	–13.29	–
2e	–	Taskan River, left bank, above Vesely Creek mouth	<i>Maitiaia</i> sp. indet.	Upper–lower Wordian	<i>Kolymia plicata</i>	Turin	Prismatic layer (2 mm thick)	Light grey and grey	Well preserved	4.7	–9.8	–
2d	7 (V)	Taskan River, left bank, above Vesely Creek mouth	<i>Kolymia plicata</i>	Lower–lower Wordian	<i>Kolymia plicata</i>	Turin	Prismatic layer (1.5–2 mm thick)	Light grey and grey	Well preserved	5.1	–10.2	–
3-55	7 (V)	Levyj Vodopadnyj Creek, Khivach River basin	<i>Neospirifer subfusciger</i> (Licharev) <i>Aphanaia</i> ex gr. <i>stepanovi</i> (Muromzova).	Upper–upper Wordian	<i>Maitiaia tenkensis</i>	Turin	Middle area of the ventral shell (4 mm thick)	Light grey	Excellent preserved	5.7	–2.0	20.4
2c	–	Taskan River, left bank, above Vesely Creek mouth	<i>Aphanaia?</i> sp. indet.	Middle–upper Roadian	<i>Kolymia inoceramiformis</i> <i>Kolymia inoceramiformis</i>	Turin	Prismatic layer (about 10 mm thick)	Light grey	Well preserved	4.6	–10.3	–
2b	–	Taskan River, left bank, above Vesely Creek mouth	<i>Aphanaia?</i> sp. indet.	Lower–upper Roadian	<i>Aphanaia dilata</i>	Turin	Prismatic layer (3–4 mm thick)	Light grey and grey	Well preserved	4.6	10.0	–
2a	6 (IV)	Taskan River, left bank, above Vesely Creek mouth	<i>Kolymia taskanica</i>	Upper Roadian	<i>Kolymia inoceramiformis</i> <i>Aphanaia dilata</i>	Turin	Prismatic layer (3–4 mm thick)	Light grey	Well preserved	4.7	–10.9	–
3-17-2	6 (IV)	Levyj Vodopadnyj Creek, Khivach River basin	<i>Kolymia taskanica</i>	Upper Roadian	<i>Kolymia inoceramiformis</i> <i>Aphanaia dilata</i>	Turin	Prismatic layer (3–4 mm thick)	Grey	Well preserved	5.4	–4.4	–
6c	6 (IV)	Taskan River, right bank, Kharius	<i>Kolymia taskanica</i>	Upper–upper Roadian	<i>Aphanaia dilata</i>	Turin	Prismatic layer (3–4 mm thick)	Light grey	Well preserved	6.5	–	–
6b	–	Taskan River, right bank, Kharius	<i>Kolymia</i> sp. indet.	Lower–upper Roadian	<i>Aphanaia dilata</i>	Turin	Prismatic layer (1–1.5 mm thick)	Light grey	Well preserved	6.0	12.3	–
6a	–	Taskan River, right bank, Kharius	<i>Kolymia inoceramiformis</i> <i>Kolymia</i> sp. indet.	Upper–lower Roadian	<i>Aphanaia dilata</i>	Turin	Prismatic layer (1.5 mm thick)	Light grey	Well preserved	5.7	–12.3	–
2	–	Taskan River, left bank, above Vesely Creek mouth	<i>Aphanaia?</i> sp. indet.	Lower–lower Roadian	<i>Aphanaia dilata</i>	Turin	Prismatic layer (2–3 mm thick)	Grey	Well preserved	2.8	–12.6	–
29-3	5 (III)	Levyj Vodopadnyj Creek, Khivach River basin	<i>Aphanaia?</i> sp. indet.	Uppermost Kungurian	<i>Kolymia inoceramiformis</i> <i>Aphanaia andrianovi</i>	Turin	Prismatic layer (1.5–2 mm thick)	Light grey and grey	Well preserved	5.4	–4.2	–
9c	5 (III)	Taskan River, right bank, Kharius	<i>Aphanaia</i> vel. <i>Kolymia</i> sp. indet.	Uppermost Kungurian	<i>Aphanaia andrianovi</i>	Kiprei	Prismatic layer (1.5 mm thick)	Light grey and dark grey	Well preserved	3.5	–13.9	–
9b	–	Taskan River, right bank, Kharius Creek	<i>Aphanaia?</i> sp. indet.	Upper–upper Kungurian	<i>Aphanaia andrianovi</i>	Kiprei	Prismatic layer (1 mm thick)	Dark grey and light grey	Well preserved	1.8	–15.5	–
9a	4 (II)	Taskan River, right bank, Kharius Creek	<i>Aphanaia?</i> sp. indet.	Upper–upper Kungurian	<i>Aphanaia andrianovi</i>	Kiprei	Prismatic layer (1.5 mm thick)	Light grey and grey	Well preserved	4.3	–15.5	–
Sp1-1	4 (II)	Spitsbergen, Starostin Cape	<i>Spiriferid brachiodont Rhombospirifer?</i> sp.	Upper–upper Kungurian	–	Tempelfjorden Group, Vorinogen Member	Secondary layer (at $L > 36$ mm)	Silvery white	Fibrous microstructure	6.5	–2.7	23.5
Sp1-2	4 (II)	Spitsbergen, Starostin Cape	Same shell	Upper–upper Kungurian	–	Tempelfjorden Group, Vorinogen Member	Secondary layer (at $L > 34$ mm)	Silvery white	Fibrous microstructure	7.0	–2.8	23.8

Table 1. (Contd.)

Sample	$\delta^{13}\text{C}$ anomaly (index for NE Russia)	Locality	Species	Stage	Zone	Formation	Location	Colour	Degree of the shell structure safety	$\delta^{13}\text{C}$ (PDB) (‰)	$\delta^{18}\text{O}$ (PDB) (‰)	T (°C)
Sp1-3	4 (II)	Spitsbergen, Starostin Cape	Same shell	Upper–upper Kungurian	–	Tempelfjorden Group, Vorin-gen Member	Secondary layer (at $L > 33$ mm)	Silvery white	Fibrous microstructure	7.2	-3.1	25.4
Sp1-4	4 (II)	Spitsbergen, Starostin Cape	Same shell	Upper–upper Kungurian	–	Tempelfjorden Group, Vorin-gen Member	Secondary layer (at $L > 32$ mm)	Silvery white	Fibrous microstructure	7.1	-3.2	25.9
Sp2-1	4 (II)	Spitsbergen, Starostin Cape	Athyridid brachiopod	Upper–upper Kungurian	–	Tempelfjorden Group, Vorin-gen Member	Secondary layer (at $L = 16$ mm)	Silvery white	Fibrous microstructure	6.6	-2.6	23.1
14	3 (I)	Munugdzhak River (Khivach River basin)	<i>Aphanaia</i> sp.	Lower–upper Kungurian	<i>Kolymaella-Bocharella</i>	Dzhigdalin	Prismatic layer (1.2 mm thick)	Grey, dark grey and light grey	Fibrous microstructure	4.2	-6.5	–
3a	3 (I)	Taskan River, left bank, down-stream Rogach Creek mouth	<i>Aphanaia</i> cf. <i>andrusovi</i> (Muronzeva)	Lower–upper Kungurian	<i>Aphanaia antrianaei</i>	Kiprei	Prismatic layer (2 mm thick)	Light grey and Well preserved	Well preserved	4.9	-7.8	–
5b-1	–	Taskan River, left bank, down-stream Rogach Creek mouth	<i>Lissochonetes magnum</i> Afanasyeva	Lower Kungurian	<i>Aphanaia lima</i>	Kiprei	Middle area of the ventral valve	Light grey	Well preserved	0.2	-13.6	–

A general temperature drop in middle latitudes during at least the second portion of the Bajocian (comparing with the Toarcian) partly coincides with a reduction of the tropical–subtropical climatic zone in the Russian Far East. This trend is based on the existing climatic conditions intermediate between warm-temperate and subtropical ones in South Primorye (Fig. 9), using palaeobotanical data (Volynets 2008) and the distribution of Boreal inoceramid bivalves, when associated only with rare thermophilous tritoniid bivalves, in the Aalenian–Bajocian Bonivur Creek Formation (Sey & Kalacheva 1980, 1981).

Callovian to Kimmeridgian interval

The highest Jurassic isotopic palaeotemperature (29.4°C), obtained by us came from aragonitic ammonoid *Kossmoceras* sp. shells, discovered in the lower middle Callovian of England (Zakharov et al. 2006b, Table 4). Other Callovian to Kimmeridgian fossils from middle latitudes show the following significant palaeotemperature fluctuation (Fig. 10): (1) 14.5–20.8°C (belemnites; lower Callovian, Poland and Pechera River Basin in Russia; Teiss et al. 1968); (2) 11.9°C (palaeotemperature calculated by us from a belemnite rostrum; middle lower Callovian Black Clay, Kineshma area, Volga River, at 1 km N from Novoloki Village; Zakharov et al. 2006b, Table 4); (3) 13.3–20.7°C (palaeotemperatures calculated by us from the ammonoid *Cadoceras elathmae* Nikitin and *Cadoceras* sp. shells; middle lower Callovian Black Clay, Kineshma area, Volga River, at 1 km N from Novoloki Village; Zakharov et al. 2006b, Table 4); (4) 9.8–16.7°C (palaeotemperatures calculated by us from brachiopod shells; middle lower Callovian Black Clay, Kineshma area, Volga River, at 1 km N from Novoloki Village; Zakharov et al. 2006b; Table 4); (5) 10.3–18.4°C (belemnites; middle Callovian, Russian Platform, Urals and Kazakhstan (Teiss et al. 1968; Podlaha et al. 1998); (6) 10.8–19.4°C (belemnites; upper Callovian, Poland, Russian Platform; Teiss et al. 1968; Longinelli et al. 2003); (7) 9.8–14.1°C (bivalves; upper Callovian, Russian Platform; Zakharov et al. 2006b); (8) 17.2–21.0°C (*Quenstedtoceras* sp. and *Kossmoceras aculcatum* Michailow; upper Callovian, Poland and Russian Platform; Zakharov et al. 2006b; Table 4); (9) 16–28°C (Oxfordian, England and Madagascar, Anderson et al. 1994; Lécuyer & Bucher 2006) (Fig. 10); (10) 11–13°C (belemnites; early Oxfordian, (lower Oxfordian, Polish); Longinelli et al. 2003); (11) 15.8–16.9°C (bivalves; lower Oxfordian, England; Anderson et al. 1994); (12) 13.5–26.7°C (belemnites; middle Oxfordian, England; Longinelli et al. 2003); (13) 12°C (belemnites; upper Oxfordian, England; Longinelli et al. 2003); (14) 16–17°C (belemnites; lower Kimmeridgian, Germany; Bowen 1961) and (15) 12–20°C (belemnites; upper Kimmeridgian, Greenland; Bowen 1969; Price & Sellwood 1994). It is important to note that palaeotemperatures calculated from some Callovian belemnites of the Russian Platform, as well as some Albian belemnites of North France, are lower than those from ammonite shells, found in the same calcareous nodule (Zakharov et al. 2006b). This evidence suggests that belemnites engaged in significant short-term vertical migrations in the water column, reaching colder upper bathyal waters.

Kimmeridgian high-latitude palaeotemperatures, calculated from belemnites and brachiopods collected in the Falkland Islands (Price & Sellwood 1994), New Zealand, Antarctica (Ditchfield et al. 1994; Podlaha et al. 1998), and the subpolar Urals (Teiss et al. 1968; Gröcke et al. 2003; V.A. Zakharov et al. 2005)

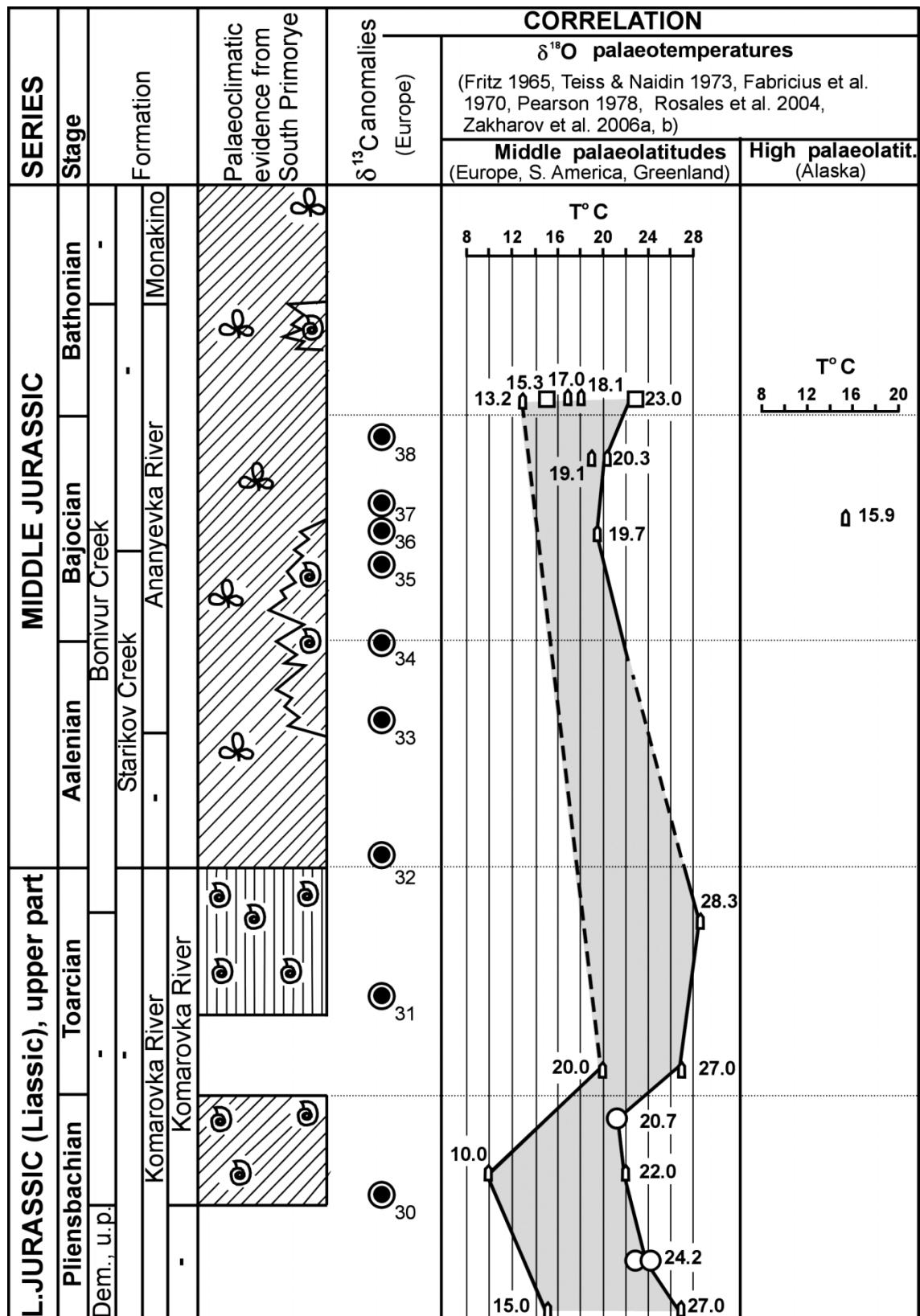
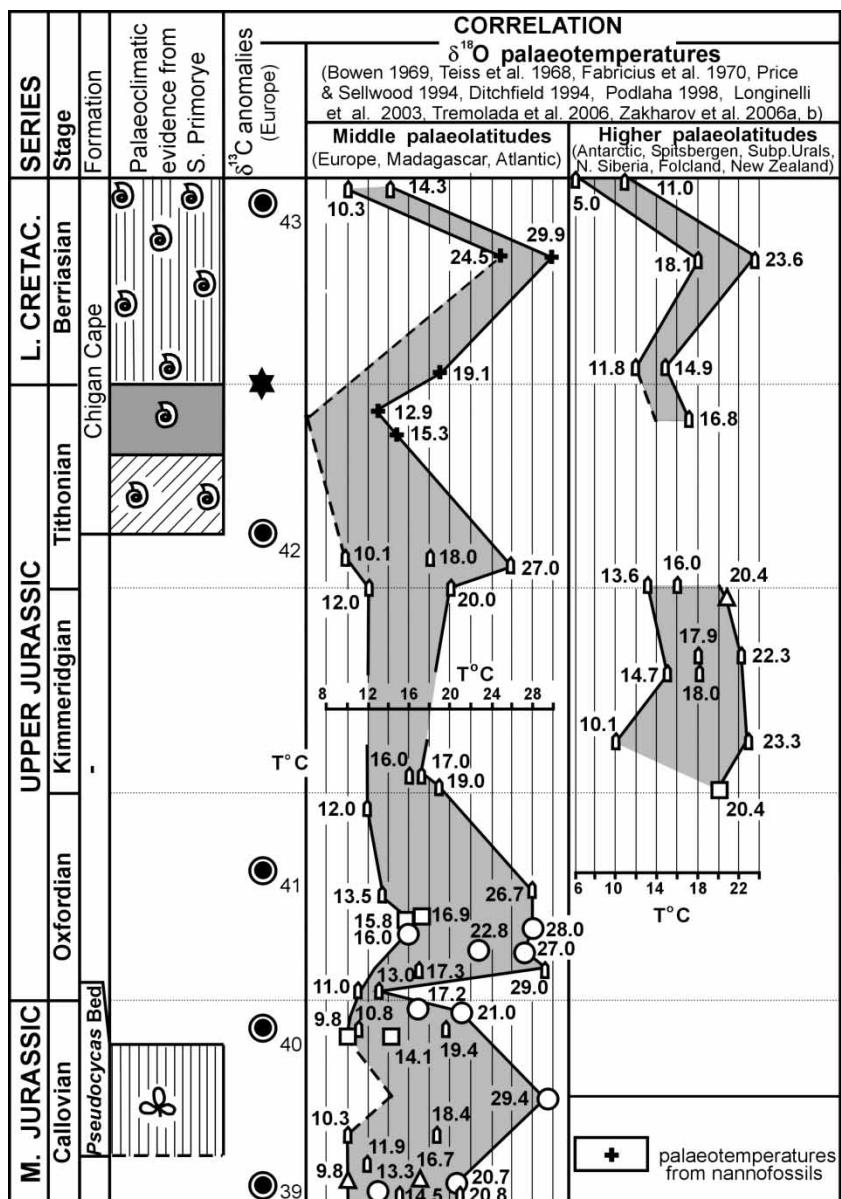



Fig. 9. Correlation of upper Liassic to Middle Jurassic of the southern Russian Far East with the available oxygen and carbon-isotope data. Positive carbon-isotopic anomalies: 30, middle Pliensbachian (Hesselbo et al. 2000; Jenkyns et al. 2002); 31, middle Toarcian (Ignatiev et al. 1982; Jenkyns et al. 2002); 32, early Aalenian (Jenkyns et al. 2002; Hesselbo et al. 2003b); 33, early late Aalenian (O'Dogherty et al. 2006); 34, earliest Bajocian (Ditchfield 1997); 35–38, Bajocian (Jenkyns et al. 2002; Hesselbo et al. 2003b; O'Dogherty et al. 2006). Additional designations as in Figs. 3–6.

Fig. 10. Correlation of Upper Jurassic to Lower Cretaceous (Berriasian) of the southern Russian Far East using available oxygen- and carbon-isotope data. Positive carbon-isotopic anomalies: 39, early Callovian (Jenkyns et al. 2002; O'Dogherty et al. 2006); 40, late Callovian (Barskov & Kiyashko 2000); 41, late Oxfordian (Anderson et al. 1994); 42, early Tithonian (Tremolada et al. 2006); 43, late Berriasian (Price et al. 2000). Additional designations as in Figs. 3–6.

vary between 10.1 and 23.3°C. The most negative $\delta^{18}\text{O}$ value representing the most elevated 'temperature' (abnormal temperature, 25°C) recorded in the lowermost Kimmeridgian of the Falkland area, was considered by Sellwood et al. (2000) and Gröcke et al. (2003) to indicate fresh-water input resulting from a reduction in ice and/or snow-sheet and associated increased runoff.

A solitary piece of climatic evidence found in the Callovian–Kimmeridgian interval in South Primorye seems to be the discovery of the Callovian cycadean frond *Pseudocycas* sp., reflecting humid subtropical conditions or neighbouring subtropical areas. Therefore, we correlate the Callovian *Pseudocycas* Beds of South Primorye with the thermal lower middle Callovian maximum, determined on the basis of the oxygen-isotope data (Zakharov et al. 2006b).

Tithonian to Berriasian interval

Isotopic palaeotemperature data for the latest Jurassic (Tithonian) are incomplete and contradictory, but evidence from the Berriasian seem to be more complete (Fig. 10). Data on marine bivalves and

ammonoids from South Primorye are in accordance with the oxygen-isotope evidence, according to which expansion of the tropical-subtropical climatic zone took place apparently in the early Tithonian (Berlin et al. 1967; Teiss et al. 1968; Price & Sellwood 1994; Tremolada et al. 2006) and early to middle Berriasian (Teiss et al. 1968; Ditchfield et al. 1994; Price & Mutterlose 2004) with a reduction in the late Tithonian (Tremolada et al. 2006; Zakharov et al. 2006b) and at the very end of the Berriasian (Ditchfield 1997; Price et al. 2000).

During the latest Jurassic palaeotemperature in middle latitudes dropped from about 27°C in the early Tithonian to 15.3°C in the late Tithonian, following warmer conditions (29.9°C) in Berriasian time (Fig. 10). The Tithonian to early Berriasian mollusc succession in South Primorye and the adjacent eastern Heilongjiang Province area, northeast China, provides evidence of the next stages: (1) early–middle Tithonian (mixed Boreal–Tethyan bivalve assemblage, represented by Boreal *Buchia* in Primorye and Heilongjiang and Tethyan *Jotrigonia* in Primorye; Tethyan and cosmopolitan ammonoids, *Semiformiceras*,

Pseudolissoceras, *Haploceras*, *Pseudosubplanites* and *Dalmasiceras* in Primorye; Sey & Kalacheva 1980, 1981; Konovalova & Markevich 2004; Sha 2007); (2) latest Tithonian (Boreal *Buchia* assemblage with no thermophilous tritonid bivalve elements in Primorye and Heilongjiang; Konovalova & Markevich 2004; Sha 2007); (3) earliest Berriasiian (Tethyan and possibly mixed Boreal-Tethyan mollusc assemblages; in this stage of our knowledge of the earliest Berriasiian Tethyan ammonoids, *Pseudosubplanites* and *Dalmasiceras* and cosmopolitan ammonoids has only been discovered in the South Primorye region, whereas the earliest Berriasiian *Buchia volgenis*-B. cf. *subokensis*-B. cf. *okensis*-B. *unschensis* assemblage is now known only in Heilongjiang, with no latest Jurassic ammonoids found in northeastern China because of the facies conditions; Zakharov et al. 1996; Sey & Kalacheva 1999; Sha 2007).

Succession of carbon-isotope events

Additional important information on Early–Middle Triassic marine environments can be obtained from data from positive carbon-isotopic anomalies. As suggested by Alcalá-Herrara et al. (1992), some variations in $\delta^{13}\text{C}/^{12}\text{C}$ ratios recorded in deep-water marine organic carbonates might be controlled by such environmental factors as the carbon budget, upwelling and primary productivity. It is difficult to separate the effect of each of these factors in deep-water conditions, but when worldwide carbon isotope shifts are observed in shallow-water carbonates, they are generally attributed to a change in primary biological productivity, first of all, as noted above, of phytoplankton. Phytoplankton is one of the main groups of organisms that utilise solar energy on the surface of the ocean and their main biomass is contained in an upper 100 m water mass, related to photosynthesis, but their location within the zone depends first of all on a degree of hydrological intermixing of water under the influence of thermal gradients and winds (Bogorov 1974). Phytoplankton productivity is great in areas characterised by an intensive vertical circulation, as in upwellings. The small amount of plankton in the Recent Arctic and Antarctic seems to be connected with the short vegetal period of phytoplankton at high latitudes. However, during times when polar ice was absent, the related hydrological conditions were probably considerably different from those of the present day, in that poleward transport of large equatorial warm-water masses and weaker vertical circulation of waters probably occurred in some climatic zones. Therefore, the actual method for investigation of Phanerozoic carbon-isotopic anomalies can be applied only with considerable care.

Much published material contains information on the carbon-isotope anomalies of the Late Carboniferous to Early Cretaceous interval (Baud et al. 1989; Holser et al. 1989; 1991; Magaritz 1989; Mii et al. 1997; Musashi et al. 2001; Zakharov et al. 2001; Berner 2002; Hesselbo et al. 2003a, 2003b; Longinelli et al. 2003; Guex et al. 2004; Krull et al. 2004; Payne et al. 2004; Rosales et al. 2004; V.A. Zakharov et al. 2005; O'Dogherty et al. 2006; Richoz 2006; Tremolada et al. 2006; Zakharov et al. 2006a; Galfetti et al. 2007; Horacek et al. 2007; Kuerschner et al. 2007; Payne & Kump 2007; Riccardi et al. 2007; Price & Page 2008). As was shown above, the most frequent Permian–Triassic positive carbon-isotopic anomalies occurred during the late Kungurian (Fig. 3) and late Wordian–early Changhsingian (Fig. 4), and somewhat less from the Induan into the earliest Anisian (Fig. 5). We suggest that a similar picture is apparent also for the late Aalenian–Bajocian time interval (Fig. 9).

However, positive carbon-isotopic anomalies seem not to be so frequent during the Hettangian–early Aalenian (Figs. 6 and 9) and Bathonian–early Berriasiian (Figs. 9 and 10) times.

Frequent positive carbon-isotopic anomalies of the latest Cisuralian (late Kungurian), Guadalupian, early Lopingian and early Middle Jurassic (late Aalenian to Bajocian) might have been biased by the very unstable biological productivity of the seas of that time, caused, apparently by repeated strong hydrological intermixing of oceanic waters under influence of considerable thermal gradients. Hydrological conditions in the latest Cisuralian (late Kungurian), Guadalupian and early Lopingian time probably differed considerably from most parts of the Cisuralian, late Lopingian, Middle and Late Triassic (somewhat less from the Induan into the earliest Anisian), Early Jurassic, late Middle and Late Jurassic and early Early Cretaceous ones (apparently mainly in a less stratified ocean).

Conclusions

1. Characteristics of Permian to the earliest Cretaceous macrofaunas from the BJKH and SR indicate that they inhabited a single marine basin (Ussiri–Lesser Hingan), located between middle and high latitudes in conditions of significant climatic change. Data obtained agree with the palaeobotanical results from this area, which show that the Permian to the earliest Cretaceous palaeoclimates in these terranes ranged mainly from warm-temperate to intermediate between warm-temperate and subtropical.
2. Judging from isotopic palaeotemperature data, various regional warmings seem to have followed the Permo–Carboniferous glaciation during later Permian to the earliest Cretaceous in the eastern Asian continental margin and these were most likely connected with the main global climatic changes, resulting in frequent expansions and reductions of the warm-temperate climatic zone of the Northern hemisphere.
3. The most frequent Permian to the earliest Cretaceous positive carbon-isotopic anomalies have been discovered within the intervals of the upper Kungurian, Capitanian, lower Changhsingian and upper Aalenian–Bajocian. Taking into account the known data on phytoplankton distribution in the present-day oceans, the location of which depends on a degree of hydrological intermixing of water, the post-Sakmarian conditions might have been related to global environmental changes biased by unstable hydrological conditions, which reached their zenith during the above-mentioned time intervals (in contrast to the Artiskian, Roadian, late Changhsingian to Toarcian and Bathonian to Berriasiian times, when more or less stratified oceans seem to have been more common).

Acknowledgements. — This work is a contribution to UNESCO-IUGS IGCP projects 506, 555 and 572 and financially supported by the Russian grants RFBR (08–05–00100–a, 09–05–98524–P_vostok_a) and FEBRAS (09–III–A–08–402) and grants from the National Natural Science Foundation of China (40630210) and the National Basic Research Program of China (2006CB806400). We gratefully acknowledge Dr Tatiana A. Veletskaia (Russia, Vladivostok) for oxygen and carbon-isotope analyses; Prof. Federico Oloriz (Spain) and Drs Susan Turner (Australia) and Vivi Vajda (Sweden) for remarks and providing valuable editorial comments that substantially improved this paper.

References

Alcalá-Herrara, J.A., Grossman, E.L. & Gartner, S., 1992: Nannofossils diversity and equitability and fine-fraction $\delta^{13}\text{C}$ across the Cretaceous/Tertiary boundary at Walvis Ridge Leg 74, South Atlantic. *Marine Micropaleontology* 20 (1), 77–88.

Altudorei, N.-V., 1999: *Constraints on the Upper Permian to Upper Triassic marine carbon isotope curve. Case studies from the Tethys*. Ph.D. thesis, Lausanne, University of Lausanne, Switzerland. 161 pp.

Anderson, T.F. & Arthur, M.A., 1983: Stable isotopes of oxygen and carbon and their application to sedimentologic and palaeoenvironmental problems. In M.A. Arthur, T.F. Anderson, I.R. Kaplan, J. Veizer & L.S. Land (eds.): *Stable isotopes in sedimentary geology*, 1–151. SEPM Short Course 10.

Anderson, T., Popp, B.N., Williams, A.C., Ho, L.Z. & Hudson, J.D., 1994: The stable isotopic records of fossils from the Peterborough Member, Oxford Clay Formation (Jurassic), U.K.: paleoenvironmental implications. *Journal of the Geological Society, London* 151 (1), 125–138.

Barskov, I.S. & Kiyashko, S.I., 2000: Thermal regime variations in the Jurassic marine basin of the East European Platform at the Callovian/Oxfordian boundary: Evidence from stable isotopes in belemnite rostra. *Doklady Akademii Nauk. Geologiya* 372 (4), 507–509 (in Russian).

Baud, A.M., Magaritz, M. & Holser, W.T., 1989: Permian-Triassic of the Tethys: Carbon isotope stratigraphy. *Geologische Rundschau* 78, 649–677.

Baud, A., Richoz, S. & Pruss, S., 2007: The lower Triassic anachronic carbonate facies in space and time. *Global and Planetary Change* 55, 81–89.

Beauchamp, B. & Baud, A., 2002: Growth and demise of biogenic chert along northwest Pangea: Evidence for end-Permian collapse of thermohaline circulation. *Palaeogeography, Palaeoclimatology, Palaeoecology* 184, 37–63.

Berlin, T.S., Naidin, D.P., Saks V.N., Teiss, R.V. & Khabakov, A.V., 1967: Jurassic and Cretaceous climate in northern USSR, from paleotemperature determinations. *International Geology Reviews* 9, 1080–1092.

Berner, R.A., 2002: Examination of hypotheses for the Permo-Triassic boundary extinction by carbon cycle modeling. *Proceedings of the National Academy of Sciences of the United States of America* 99 (7), 4172–4177.

Bittner, A., 1899: Versteinerungen aus den Trias-Ablagerungen des Süd-Ussuri-Gebietes in der ostsbirischen Küstenprovinz. *Mémoires du Comité Géologique* 7 (4), 1–35.

Bogorov, V.G., 1974: *Plankton Mirovogo okeana* [Plankton of the World Ocean]. Nauka, Moscow. 320 pp. (in Russian).

Boiko, E.V., Belyaeva, G.V. & Zhuravleva, I.T., 1991: *Sphinctozoa phanerozoica territorii SSSR* [Sphinctozoa from the Phanerozoic of the USSR area]. Nauka, Moscow. 224 pp. (in Russian).

Bowen, R., 1961: Palaeotemperature analyses of Mesozoic Belemnoida from Germany and Poland. *Journal of Geology* 69 (1), 221–235.

Bowen, R., 1969: *Paleotemperaturnyj analis* [Palaeotemperature analysis]. Nedra, Leningrad. 208 pp. (in Russian).

Brand, U., Logan, A., Hille, N. & Richardson, J., 2003: Geochemistry of modern brachiopods for oceanography and paleoceanography. *Chemical Geology* 198, 305–334.

Burago, V.I., 1973: Cathaysian elements in Permian flora of South Primorye. *Geologiya i Geofizika* 11, 54–61 (in Russian).

Burago, V.I., 1979: Early Permian flora of the Daubikhe Zone. In V.A. Krassilov (ed.): *Dalnevostochnaya floristika* [Far Eastern floristic]. Trudy Biologo-Pochvennogo Instituta Dalnevostochnogo Nauchnogo Tsentr Akademii Nauk SSSR, Novaya Seriya, 53 (156), 49–67 (in Russian).

Burago, V.I., 1983: Representatives of the genus *Comia* in Permian sediments of Primorye. In V.A. Krassilov (ed.): *Paleobotanika i phytostratigraphy Vostoka SSSR* [Palaeobotany and Phytostratigraphy of the East USSR], 17–43. Vladivostok: Dalnevostochnyj Nauchnyj Tsentr Akademii Nauk SSSR (in Russian).

Burago, V.I., 1986: The problem of the Angarian and Cathaysian kingdom boundary. In Y.D. Zakharov & Y.I. Onoprienko (eds.): *Permo-Triasye sobytiya v razvitiu organicheskogo mira severo-vostochnoj Azii* [Permian-Triassic events during the evolution of North-East Asia biota], 6–23. Vladivostok: DVNC AN SSSR (in Russian).

Burago, V.I., 1990: Vladivostok horizon of the Upper Permian of southwestern Primorye. In Y.D. Zakharov (ed.): *Novye dannye po biostratigraphii paleozoya i mezozoika yuga Dalnego Vostoka* [New data on Palaeozoic and Mesozoic biostratigraphy of the South Far East], 81–103. Vladivostok: Dalnevostochnoye Otdeleniye Akademii Nauk (in Russian).

Burago, V.I. & Kotlyar, G.V., 1974: Reshetnikov Suite of Western Primorye. In U.I. Krasnyj & L.I. Popko (eds.): *Paleozoy Dalnego Vostoka* [Palaeozoic of the Far East], 258–267. Dalnevostochnyj Nauchnyj Tsentr Akademii Nauk SSSR, Khabarovsk (in Russian).

Chen, Z.-Q., Kaiho, K. & George, A.D., 2005: Early Triassic recovery of the brachiopod faunas from the end-Permian mass extinction: A global review. *Palaeogeography, Palaeoclimatology, Palaeoecology* 224, 270–290.

Chumakov, N.M., 2004: Climate and climatic zones of the Permian and Early Triassic: *Trudy GIN RAN* 550, 230–256 (in Russian).

Dagys, A.S., 1965: *Triasovye brachiopody Sibiri* [Triassic brachiopods of Siberia]. Nauka, Moscow. 239 pp. (in Russian).

Dagys, A.S., 1974: *Triasovye brachiopody (morphologiya, sistema, filogeniya, stratigraphicheskoye znachenije i biogeografiya)* [Triassic brachiopods (morphology, classification, phylogeny, stratigraphical significance and biogeography)]. Nauka, Novosibirsk. 388 pp. (in Russian).

Ditchfield, P.W., 1997: High northern palaeolatitude Jurassic-Cretaceous palaeotemperature variations: New data from Kong Karls Land, Svalbard. *Palaeogeography, Palaeoclimatology, Palaeoecology* 130, 163–175.

Ditchfield, P.W., Marshall, J.D. & Pirrie, D., 1994: High latitude palaeotemperature variation: New data from the Tithonian to Eocene of James Ross island, Antarctica. *Palaeogeography, Palaeoclimatology, Palaeoecology* 107, 79–101.

Eliseeva, V.K. & Radchenko, G.P., 1964: Stratigraphy of Permian non-marine and volcanogenic rocks of South Primorye. *Trudy Vsesoyuznogo Geologicheskogo Nauchno-Issledovatel'skogo Instituta, N.S.* 107, 31–53 (in Russian).

Fabricius, F., Friedrichsen, H. & Jacobshagen, V., 1970: Paläotemperaturen und Paläoklima in Obertrias und Lias der Alpen. *Geologische Rundschau* 59 (2), 805–826.

Francis, J.E., 1994: Palaeoclimates of Pangea – Geological evidence. Pangea: *Global environments and resources*. Canadian Society of Petroleum Geologists 17, 265–274.

Fritz, P., 1965: O^{18}/O^{16} -Isotopenanalysen und Paleotemperaturbestimmungen an Belemniten aus dem schwäb. Jura. *Geologische Rundschau* 54, 261–269.

Galfetti, T., Bucher, H., Brayard, A., Hochuli, P.A., Weisser, H., Guodun, K., Altudorei, V. & Guex, J., 2007: Late Early Triassic climate change: Insights from carbonate carbon isotopes, sedimentary evolution and ammonoid paleobiogeography. *Palaeogeography, Palaeoclimatology, Palaeoecology* 243 (3–4), 394–411.

Golonka, J., Ross, M.I. & Scotese, C.R., 1994: Palaeoclimates of Pangea – Geological evidence. In A.F. Embry, B. Beauchamp & D.J. Glass (eds.): *Pangea: Global environments and resources*, Canadian Society of Petroleum Geologists 17, 1–47. Calgary.

Golozubov, V.V., 2006: *Tektonika yurskikh i nizhnemelovykh kompleksov severo-zapadnogo obramleniya Tikhogo okeana* [Tectonics of the Jurassic and Lower Cretaceous assemblages of the north-western framing of the Pacific ocean]. Vladivostok: Dalnauka. 240 pp. (in Russian).

Grossman, E.L. & Ku, T.L., 1986: Oxygen and carbon isotope fractionation in biogenic aragonite: temperature effects. *Chemical Geology* 59, 59–74.

Grossman, E.L., Zhang, C. & Yancey, T.E., 1991: Stable-isotope stratigraphy of brachiopods from Pennsylvanian shales in Texas. *Geological Society of America Bulletin* 103, 953–965.

Gröcke, D.R., Price, G.D., Ruffell, A.H., Mutterlose, J. & Baraboshkin, E., 2003: Isotopic evidence for Late Jurassic-Early Cretaceous climate change. *Palaeogeography, Palaeoclimatology, Palaeoecology* 202, 97–118.

Guex, J., Bartolini, A., Altudorei, V. & Taylor, D., 2004: High-resolution ammonite and carbon isotope stratigraphy across the Triassic-Jurassic boundary at New York Canyon (Nevada). *Earth and Planetary Letters* 225, 29–41.

Hesselbo, S.P., Meister, C. & Grecke, D.R., 2000: A potential global stratotype for the Sinemurian-Pliensbachian boundary (Lower Jurassic), Robin Hood's Bay, UK: Ammonite faunas and isotope stratigraphy. *Geological Magazine* 137 (6), 601–607.

Hesselbo, S.P., McElwain, J.C., Popa, M., Surlyk, F. & Haworth, M., 2003a: *New floral, sedimentological and isotopic investigation of the Triassic-Jurassic boundary strata in Jameson Land, East Greenland*. 3rd Workshop on the IGCP Project 458: “Triassic/Jurassic Boundary Changes”. Stará Lesná, Slovakia, 22–23.

Hesselbo, S.P., Morgans-Bell, H.S., McElwain, J.C. & Rees, P.M., 2003b: Carbon-cycle perturbation in the Middle Jurassic and accompanying changes in the terrestrial paleoenvironment. *Journal of Geology* 111, 259–276.

Holser, W.T., Schönlau, H.-P., Atrep, M. Jr., Boeckelmann, K., Klein, P., Magaritz, M., Orth, Ch.J., Fenninger, A., Jenny, C., Kralik, M., Mauritsch, H., Pak, E., Schramm, J.-M., Stattegger, K. & Schmöller, R., 1989: A unique geochemical record at the Permian/Triassic boundary. *Nature* 337, 39–44.

Holser, W.T., Schönlau, H.P., Boeckelmann, K. & Magaritz, M., 1991: The Permian-Triassic of the Gartnerkofel-1 Core (Carnic Alps, Austria): Synthesis and conclusions. In W.T. Holser & H.P. Schönlau (eds.): *The Permian-Triassic Boundary in the Carnic Alps of Austria (Gartnerkofel Region)*. *Abhandlungen Geologische Bundesanstalt* 45, 213–232. Wien: Geologische Bundesanstalt.

Horacek, M., Wang, X., Grossman, E.L., Richoz, S. & Cao, Z., 2007: The carbon-isotope curve from the Chaohu section, China: Different trends at the Induan-Olenekian boundary or diagenesis? *Albertiana* 35, 41–45.

Hyde, W.T., Grossman, E.L., Crowley, T.J., Pollard, D. & Scotese, C.R., 2006: Siberian glaciation as a constraint on Permian-Carboniferous CO₂ levels. *Geology* 34 (6), 421–424.

Ignatiev, A.V., Nikolaev, V.I. & Strizhov, V.P., 1982: The problem on anomalously high $\delta^{13}C$ values in some biogenic carbonates. *IX Vsesoyuznyj simpozium po stabilnym izotopam v geokhimi 2* [IX all-union symposium on stable isotopes in geochemistry 2], 404–406. GEOKHI, Moscow (in Russian).

Isozaki, Y., Kawahata, H. & Ota, A., 2007: A unique carbon isotope record across the Guadalupian-Lopingian (Middle-Upper Permian) boundary in mid-oceanic paleo-atoll carbonates: The high-productivity “Kamura event” and its collapse in Panthalassa. *Global and Planetary Change* 55, 21–38.

Jansson, I.-M., McLoughlin, S., Vajda, V. & Pole, M., 2008: An Early Jurassic flora from the Clarence-Moreton Basin, Australia. *Review of Palaeobotany and Palynology* 150, 5–21.

Jenkyns, H.C., Jones, C., Gröcke, D.R., Hesselbo, S.P. & Parkinson, D.N., 2002: Chemostratigraphy of the Jurassic System: Applications, limitations and implications for palaeoceanography. *Journal of the Geological Society, London* 159, 351–378.

Kaltenegger, W., 1967: Paläotemperaturbestimmungen an aragonitischen Dibranchiatenrostren der Trias. *Die Naturwissenschaften* 54 (19), 515.

Kemkin, I.V., 2006: *Geodinamicheskaya evolyutsiya Sikhote-Alinya i Japono-morskogo regiona v mezozoye* [Geodynamic evolution of the Sikhote-Alin and Sea of Japan region in the Mesozoic]. Moscow: Nauka. 258 pp. (in Russian).

Khanchuk, A.I., Ratkin, V.V., Ryazantseva, M.D., Golozubov, V.V. & Gonokhova, N.G., 1995: *Geologiya i poleznye iskopaemye Primorskogo kraya: ocherk* [Outline on geology and minerals of Primorye region]. Vladivostok: Dalnauka. 67 pp. (in Russian).

Kidder, D.L. & Worsley, T.R., 2004: Causes and consequences of extreme Permo-Triassic warming to globally equitable climate and relation to the Permo-Triassic extinction and recovery. *Palaeogeography, Palaeoclimatology, Palaeoecology* 203, 207–237.

Kiparisova, L.D., 1972: Paleontological basis of Triassic stratigraphy of Primorye. 2. Late Triassic mollusk and general stratigraphy. *Trudy VSEGEI, November Series* 181, 1–246 (in Russian).

Konovalova, I.V. & Markevich, P.V., 2004: Jurassic stratigraphical units. Southern Primorye. In P.V. Markevich & Y.D. Zakharov (eds.): *Trias i Jura Sikhote-Alinya. I. Terrigennyj complex* [Triassic and Jurassic of the Sikhote-Alin. I. Terrigenous assemblage], 233–315. Vladivostok: Dalnauka (in Russian).

Korte, C., Jaspe, T., Kozur, H.W. & Veizer, J., 2005a: $\delta^{18}\text{O}$ and $\delta^{13}\text{C}$ of Permian brachiopods: A record of seawater evolution and continental glaciation. *Palaeogeography, Palaeoclimatology, Palaeoecology* 224, 333–351.

Korte, C., Kozur, H.W. & Veizer, J., 2005b: $\delta^{18}\text{O}$ and $\delta^{13}\text{C}$ values of Triassic brachiopods and carbonate rocks as proxies for coeval seawater and paleotemperature. *Palaeogeography, Palaeoclimatology, Palaeoecology* 226, 287–306.

Korte, C., Jones, P.J., Brand, U., Mertmann, D. & Veizer, J., 2008: Oxygen isotope values from high latitudes: Clues for Permian sea-surface temperature gradients and Late Palaeozoic deglaciation. *Palaeogeography*, doi: 10.1016/j.palaeo.2008.06.012.

Kotlyar, G.V., Zakharov, Y.D., Kropacheva, G.S., Pronina, G.P., Chediya, I.O. & Burago, V.I., 1989: *Pozdnepermskij etap evolyutsii organicheskogo mira. Midisjiskij yarus SSSR* [Evolution of the latest Permian biota. Midian regional stage in the USSR]. Nauka, Leningrad. 184 pp. (in Russian).

Kotlyar, G.V., Zakharov, Y.D., Popeko, L.I., Tazawa, J. & Burago, V.I., 1997: Layers with *Timorites* in East Asia. *Tikhookeanskaya Geologiya* 16 (3), 41–50 (in Russian).

Kotlyar, G.V., Belyansky, G.C., Burago, V.I., Nikitina, A.P., Zakharov, Y.D. & Zhuravlev, A.V., 2006: South Primorye, Far East Russia – A key region for global Permian correlation. *Journal of Asian Earth Sciences* 26, 280–293.

Kozur, H.W., 2007: Biostratigraphy and event stratigraphy in Iran around the Permian-Triassic boundary (PTB): Implications for the causes of the PTB biotic crisis. *Global and Planetary Change* 55 (1–3), 155–176.

Krassilov, V.A. & Shorochova, S.A., 1975: Triassic geofloras and some basic phytogeographical principles. In V.A. Krassilov (ed.): *Iskopaemye flory Dalnego Vostoka* [Fossil floras in Far East], 7–16. DVNC AN SSSR, Vladivostok (in Russian).

Krassilov, V.A. & Zakharov, Y.D., 1975: *Pleuromeia* from the Lower Triassic of Olenek River. *Paleontologicheskij Zhurnal* 2, 133–139 (in Russian).

Krull, E.S., Lehrmann, D.J., Druke, D., Kessel, B., Yu, Y.Y. & Li, R., 2004: Stable carbon isotope stratigraphy across the Permian-Triassic boundary in shallow marine carbonate platforms, Nanpanjian Basin, south China. *Palaeogeography, Palaeoclimatology, Palaeoecology* 204 (3–4), 297–315.

Kuerschner, W.M., Bonis, N.R. & Krystyn, L., 2007: Carbon-isotope stratigraphy and palynostratigraphy of the Triassic-Jurassic transition in the Tiefengraben section – Northern Calcareous Alps (Austria). *Palaeogeography, Palaeoclimatology, Palaeoecology* 244 (1–4), 257–280.

Kurushin, N.I. & Zakharov, V.A., 1995: Climate in north Siberia through the Triassic Period. *Bulleten Moskovskogo Obschestva Ispytatelei Prirody, Ser. Geology* 70 (3), 55–60 (in Russian).

Larsson, K., Solakius, N. & Vajda, V., 2000: Foraminifera and palynomorphs from the greensand-limestone sequences (Aptian-Coniacian) in southwestern Sweden. *Geologische Jahrbuch für Geologie und Paläontologie* 216, 277–312.

Lécuyer, C. & Bucher, H., 2006: Stable isotope composition of a late Jurassic ammonite shell: A record of seasonal surface water temperatures in the southern hemisphere? *eEarth* 1, 1–7.

Longinelli, A., Wierzbowski, H. & Matteo, A.D., 2003: $\delta^{18}\text{O}(\text{PO}_4^{3-})$ and $\delta^{18}\text{O}(\text{CO}_3^{2-})$ from belemnite guards from Eastern Europe: Implications for palaeoceanographic reconstructions and for the preservation of pristine isotopic values. *Earth and Planetary Science Letters* 209, 337–350.

Magaritz, M., 1989: ^{13}C minima follow extinction events: A clue to faunal radiation. *Geology* 17, 337–340.

Markevich, P.V. & Zakharov, Y.D. (eds.), 2004: *Trias i yura Sikhote-Alinya. I. Terrigennyj complex* [Triassic and Jurassic of the Sikhote-Alin. I. Terrigenous assemblage]. Vladivostok: Dalnauka. 421 pp. (in Russian).

Markevich, P.V., Golozubov, V.V., Kemkin, I.V., Khanchuk, A.I., Zakharov, Y.D., Philippov, A.N. & Shorokhova, S.A., 2005: Cyclicity of the Mesozoic sedimentation on the eastern margin of the Chinese Craton as a response to the main geodynamic events in the adjacent active area. In J.M. Mabesoone & V.H. Neumann (eds.): *Cyclic development of sedimentary basins: Developments in sedimentology* 5, 355–395. Elsevier, Amsterdam.

Markevich, P.V., Zakharov, Y.D. & Konovalova, I.V., 2008: Triassic–Jurassic terrigenous sedimentation. In P.V. Markevich & Y.D. Zakharov (eds.): *Trias i Jura Sikhote-Alinya. 2. Vulkanogenno-osadochnyj complex, paleobiogeographiya* [Triassic and Jurassic of the Sikhote-Alin. 2. Vulkanogenno-osadochnyj complex, paleobiogeographiya], 8–22. Vladivostok: Dalnauka (in Russian).

Mehlqvist, K., Vajda, V. & Larsson, L., 2009: An assemblage of a Jurassic (Pliensbachian) flora from Bornholm, Denmark – a study of a historic collection at Lund University, Sweden. *GFF 131* [this issue].

Mei, Sh. & Henderson, Ch.M., 2001: Evolution of Permian conodont provincialism and its significance in global correlation and paleoclimate implication. *Palaeogeography, Palaeoclimatology, Palaeoecology* 170, 237–260.

Meyen, S.V., 1966: *Cordaites* of the Upper Palaeozoic of North Eurasia (morphology, epidermal structure, systematics and stratigraphic significance). *Trudy Geologicheskogo Instituta Akademii Nauk SSSR* 150, 5–184 (in Russian).

Mii, H.S., Grossman, E.L. & Yancey, T.E., 1997: Stable carbon and oxygen shifts in Permian seas of West Spitsbergen – Global change or diagenetic artefact? *Geology* 25 (3), 227–230.

Morante, R. & Hallam, A., 1996: Organic carbon isotopic record across the Triassic–Jurassic boundary in Austria and its bearing on the cause of the mass extinction. *Geology* 24 (5), 391–394.

Musashi, M., Isozaki, Y., Koike, T. & Kreulen, R., 2001: Stable carbon isotope signature in mid-Panthalassa shallow-water carbonates across the Permian-Triassic boundary: Evidence for ^{13}C -depleted superocean. *Earth and Planetary Science Letters* 191, 9–20.

O'Dogherty, L., Sandoval, J., Bartolini, A., Bruchez, S., Bill, M. & Guex, J., 2006: Carbon-isotope stratigraphy and ammonite faunal turnover for the Middle Jurassic in the Southern Iberian palaeomargin. *Palaeogeography, Palaeoclimatology, Palaeoecology* 239, 311–333.

Okuneva, T.M., 2002: Biostratigraphy of the Triassic of the Far East and Trans-Baikal area. *Tikhookeanskaya Geologiya* 21 (6), 3–30 (in Russian).

Payne, J.L. & Kump, L.R., 2007: Evidence for recurrent Early Triassic massive volcanism from quantitative interpretation of carbon isotope fluctuations. *Earth and Planetary Science Letters* 257, 264–277.

Payne, J.L., Lehrmann, D.J., Wei, J., Orchard, M.J., Schrag, D.P. & Knoll, H., 2004: Large perturbations of the carbon cycle during recovery from the end-Permian extinction. *Science* 305, 506–509.

Pearson, R., 1978: *Climate and evolution*. Academic Press, London. 78 pp.

Podlaha, O.G., Mutterlose, J. & Veizer, J., 1998: Preservation of $\delta^{18}\text{O}$ and $\delta^{13}\text{C}$ in belemnite rostra from Jurassic/Early Cretaceous successions. *American Journal of Science* 298, 324–347.

Popov, A.M., 2008: Brachiopods of the Triassic terrigenous assemblage. In P.V. Markevich & Y.D. Zakharov (eds.): *Trias i Jura Sikhote-Alinya. 2. Vulkanogenno-osadochnyj complex, paleobiogeographiya* [Triassic and Jurassic of the Sikhote-Alin. 2. Vulkanogenno-osadochnyj complex, paleobiogeographiya], 185–194. Dalnauka, Vladivostok (in Russian).

Price, G.D. & Mutterlose, J., 2004: Isotopic signals from late Jurassic-early Cretaceous (Volgian-Valanginian) sub-Arctic belemnites, Yatria River, Western Siberia. *Journal of the Geological Society of London* 161, 959–968.

Price, G.D. & Page, K.N., 2008: A carbon and oxygen isotopic analysis of molluscan faunas from the Callovian-Oxfordian boundary at Redcliff Point, Weymouth, Dorset: Implications for belemnite behaviour. *Proceedings of the Geologists' Association* 119, 153–160.

Price, G.D. & Sellwood, B.W., 1994: Palaeotemperatures indicated by Upper Jurassic (Kimmeridgian-Tithonian) fossils from Mallorca determined by oxygen isotopic composition. *Palaeogeography, Palaeoclimatology, Palaeoecology* 110, 1–10.

Price, G.D., Ruffell, H., Jones, Ch.E., Kalin, R.M. & Mutterlose, J., 2000: Isotopic evidence for temperature variation during the early Cretaceous (late Ryazanian-mid-Hauterivian). *Journal of the Geological Society, London* 157, 335–343.

Punina, T.A., 1999: *Triasovye skleraktinii v organogennykh postroikakh Dalnegorskogo raiona (Sikhote-Alin)* [Triassic scleractinians in organogenous buildups of the Dalnegorsk district (Sikhote-Alin)]. Vladivostok: DVO RAN. 128 pp. (in Russian).

Rao, C.P., 1988: Oxygen and carbon isotope composition of cold-water Berriedale Limestone (Lower Permian, Tasmania, Australia). *Sedimentary Geology* 60, 221–231.

Riccardi, A., Kump, L.R., Arthur, M.A. & D'Hondt, S., 2007: Carbon isotopic evidence for chemocline upward excursions during the end-Permian event. *Palaeogeography, Palaeoclimatology, Palaeoecology* 248 (1–2), 73–81.

Richoz, S., 2006: Stratigraphie et variations isotopiques du carbone dans le permien supérieur et le trias inférieur de quelques localités de la Néotéthys (Turquie, Oman et Iran). *Mémoires de Géologie (Lausanne)* 46, Lausanne. 264 pp.

Rosales, I., Robles, S. & Quesada, S., 2004: Elemental and oxygen isotope composition of Early Jurassic belemnites: salinity vs. temperature signals. *Journal of Sedimentary Research* 74 (3), 342–354.

Savin, S.M., 1977: The history of the earth's surface temperature during the past 100 million years. *Annual Review of Earth and Planetary Sciences* 5, 319–355.

Sellwood, B.W., Valdes, P.J. & Price, G.D., 2000: Geological evaluation of multiple general circulation model simulations of Late Jurassic palaeoclimate. *Palaeogeography, Palaeoclimatology, Palaeoecology* 156, 147–160.

Sey, I.I. & Kalacheva, Ye.D., 1980: Biostratigraphy of the Lower and Middle Jurassic deposits of the Far East. *Trudy VSEGEI, New Series* 285, 1–188 (in Russian).

Sey, I.I. & Kalacheva, Ye.D., 1981: Role of ptylloceratids in separating of Middle and Upper Jurassic deposits of the soviet Far East. *Geologija i Geofizika* 12, 34–46.

Sey, I.I. & Kalacheva, Ye.D., 1999: Early Cretaceous ammonites of the Sikhote-Alin system and their biostratigraphic and biogeographical implications. *Tikhookeanskaya Geologiya* 18 (6), 83–92 (in Russian).

Sha, J., 2007: Cretaceous stratigraphy of northeast China: Non-marine and marine correlation. *Cretaceous Research* 28, 146–170.

Shen, S.Zh., Cao, Ch.Q., Henderson, Ch.M., Wang, X.-D., Shi, G.R., Wang, Y. & Wang, W., 2006: End-Permian mass extinction pattern in the northern periphery of Gondwanaland. *Palaeoworld* 15, 3–30.

Shorochova, S.A., 1997: Late Triassic floras in the Primorye region, Russia. *Mémoires de Géologie (Lausanne)* 30, 109–120.

Taschi, S.M. & Burago, V.I., 1974: Lithological-palaeofloristical characteristics of Permian sediments of South Primorye. *Sovetskaya Geologiya* 9, 40–48 (in Russian).

Teiss, R.V. & Naidin, D.P., 1973: *Paleotermometriya i izotopnyj sostav kisloroda organogennych karbonatov* [Paleotermometry and oxygen isotopic composition of organogenic carbonates]. Moscow: Nauka. 255 pp. (in Russian).

Teiss, R.B., Naidin, D.P. & Saks, V.N., 1968: Determination of Late Jurassic and Early Cretaceous palaeotemperatures from oxygen isotopic composition of belemnite rostra. *Trudy Instituta Geologii i Geofiziki Sibirskogo Otdeleniya Akademii Nauk SSSR* 48, 51–71 (in Russian).

Tong, J. & Zhao, L., 2005: Triassic in Chaohu, Anhui Province. *Albertiana* 33 (2), 129–148.

Tremolada, F., Bornemann, A., Bralower, T.J., Koeberl, Ch. & Schootbrugge, T.J., 2006: Paleoceanographic changes across the Jurassic/Cretaceous boundary: The calcareous phytoplankton response. *Earth and Planetary Science Letters* 241, 361–371.

Vajda, V., 2001: Aalenian to Cenomanian palynofloras of SW Scania, Sweden. *Acta Palaeontologica Polonica* 46, 403–426.

Vajda, V. & McLoughlin, S., 2007: Extinction and recovery patterns of the vegetation across Cretaceous-Palaeogene boundary – A tool for unravelling the causes of the end-Permian mass-extinction. *Review of Palaeobotany and Palynology* 144, 99–112.

Vajda, V. & Wigforss-Lange, J., 2009: Onshore Jurassic of Scandinavia and related areas. *GFF 131* [this issue].

Volynets, E.B., 1999: New data on the age of the Monakino Unit from the Partizansk Basin, Primorie. *Geology of Pacific Ocean* 14, 1007–1014.

Volynets, E.B., 2008: Flora of the Jurassic terrigenous assemblage. In P.V. Markevich & Y.D. Zakharov (eds.): *Trias i Jura Sikhote-Alinya. 2. Vulkanogenno-osadochnyj complex, paleobiogeographiya* [Triassic and Jurassic of the Sikhote-Alin. 2. Volcano-sedimentary assemblage, paleobiogeography], 175–185. Vladivostok: Dalnauka (in Russian).

Volynets, E.B. & Shorochova, S.A., 2006: Changes in floral taxonomic diversity reflecting climatic fluctuations in the Late Triassic of the Primorye region, Russia. In Q. Yang, Y.D. Wang & E.A. Weldon (eds.): *Ancient life and modern approaches, Abstracts of the Second International Palaeontological Congress (June 17–21, 2006), Beijing, China*, 408–409. University of Science and Technology of China Press, Hefei.

Volynets, E.B. & Shorochova, S.A., 2007: Late Triassic (Mongugai) Flora of the Primorye Region and Its Position among Coeval Floras of Eurasia. *Russian Journal of Pacific Geology* 1 (5), 482–494.

Volynets, E.B., Shorochova, S.A. & Sun, G., 2006: Early Norian flora from Partizansk River Basin of Primorye, Russia. *Global Geology* 9 (1), 1–12.

Volynets, E.B., Shorochova, S.A. & Sun Ge, 2008: Late Triassic Flora of the Partizanskaya River Basin (Southern Primor'e). *Stratigraphy and Geological Correlation* 16 (1), 47–58.

Vuks, G.P. & Chedia, I.O., 1986: Lyudianza foraminifera of the Neizvestnaya Bay (South Primorye). In Y.D. Zakharov & Y.I. Onoprienko (eds.): *Korrelatsiya permo-triasovykh otlozhenij vostoka SSSR* [Correlation of Permo-Triassic sediments of the East USSR], 82–88. DVNC AN SSSR, Vladivostok (in Russian).

Wignall, P.B. & Twitchett, R.J., 2002: Permian-Triassic sedimentology of Jameson Land, East Greenland: incised submarine channels in an anoxic basin. *Journal of the Geological Society, London* 159, 691–703.

Worsley, D., 2006: The post-Caledonian geological development of Svalbard and the Barents Sea. *Norsk Geologisk Forening* 3. In H.A. Nakrem & A. Mørk (eds.): *Abstracts and Proceedings of the Geological Society of Norway*, 5–21. Geological Society of Norway, Trondheim.

Yin, H. & Zhang, K., 1996: Eventostratigraphy of the Permian-Triassic boundary at Meishan section, South China. In H. Yin (ed.): *The Palaeozoic–Mesozoic boundary candidates of the Global Stratotype Section and Point of the Permian–Triassic boundary*, 84–96. China University of Geosciences Press, Wuhan.

Yin, H., Qinglai, F., Lai, X., Baud, A. & Tong, J., 2007: The protracted Permian-Triassic crisis and multi-episode extinction around the Permian-Triassic boundary. *Global and Planetary Change* 55, 1–20.

Zakharov, V.A., Kurushin, N.I. & Pokhialainen, V.P., 1996: Paleobiogeographic criteria of terrane geodynamics of northeastern Asia in Mesozoic. *Russian Geology and Geophysics* 37 (11), 1–22.

Zakharov, V.A., Baulin, F., Dzyuba, O.S., Dyu, V., Zverev, K.V. & Reard, M., 2005: Isotopic and faunal record of high paleotemperatures in the Kimmeridgian of the Subpolar Urals. *Geologija i Geofizika* 46 (1), 3–20 (in Russian).

Zakharov, Y.D., 1983: New Permian cyclolobids (Goniatitida) of the south USSR. *Paleontologicheskiy Zhurnal* 2, 126–130 (in Russian).

Zakharov, Y.D., 1997a: Ammonoid evolution and the problem of the stage and substage division of the Lower Triassic. *Mémoires de Géologie (Lausanne)* 30, 121–136.

Zakharov, Y.D., 1997b: Carnian and Norian sirenitid ammonoids of the north-western circum-Pacific and their role in the Late Triassic faunal successions. *Mémoires de Géologie (Lausanne)* 30, 37–144.

Zakharov, Y.D. & Biakov, A.S., 2008: Carbon-isotope of organogenic carbonates of the Late Paleozoic and Early Mesozoic. In P.V. Markevich & Y.D. Zakharov (eds.): *Trias i Jura Sikhote-Alinya. 2. Vulkanogenno-osadochnyj complex, paleobiogeographiya* [Triassic and Jurassic of the Sikhote-Alin. 2. Volcano-sedimentary assemblage, paleobiogeography], 226–232. Dalnauka, Vladivostok (in Russian).

Zakharov, Y.D. & Oleinikov, A.V., 1994: New data on the problem of the Permian-Triassic boundary in the Far East. *Canadian Society of Petroleum Geologists* 17, 845–856.

Zakharov, Y.D. & Pavlov, A.M., 1986a: Permian cephalopods of Primorye region and the problem of Permian zonal stratification in Tethys. In Y.D. Zakharov & Y.I. Onoprienko (eds.): *Korrelatsiya permo-triasovykh otlozhenij vostoka SSSR* [Correlation of Permo-Triassic sediments of the East USSR], 5–32. DVNC AN SSSR, Vladivostok (in Russian).

Zakharov, Y.D. & Pavlov, A.M., 1986b: First finding of araxoceratid ammonoids in the Permian of the east USSR. In Y.D. Zakharov & Y.I. Onoprienko (eds.): *Permo-Triasye sobytiya v razvitiu organicheskogo mira severo-vostochnoj Azii* [Permo-Triassic Events in evolution of biota of North-East Asia], 74–85. DVNC AN SSSR, Vladivostok (in Russian).

Zakharov, Y.D. & Shkolnik, E.L., 1994: Permian-Triassic cephalopod facies and global phosphatogenesis. *Mémoires de Géologie (Lausanne)* 22, 121–182.

Zakharov, Y.D., Oleinikov, A. & Kotlyar, G.V., 1997a: Late Changxingian ammonoids, bivalves, and brachiopods in South Primorye. In J.M. Dickins (ed.): *Late Palaeozoic and Early Mesozoic circum-Pacific events and their global correlation*, 142–146. Cambridge University Press, Cambridge.

Zakharov, Y.D., Ukhaneva, N.G., Kiseleva, A.V., Kotlyar, G.V., Nikitina, A.P., Tazawa, J., Gvozdev, V.I., Ignat'ev, A.V. & Cherbadzhi, A.K., 1997b: Geochemical signals as guidance for definition of the Middle–Upper Permian boundary in the South Kitakami (Japan) and Primorye (Russia). In P. Dheeradilok et al. (eds.): *Proceedings of the International Conference on Stratigraphy and tectonic evolution of Southeast Asia and the South Pacific*, 88–100. Bangkok, Geological Society of Thailand.

Zakharov, Y.D., Borikina, N.G., Cherbadzhi, A.K., Popov, A.M. & Kotlyar, G.V., 1999a: Main trends in Permo-Triassic shallow-water temperature changes: Evidence from oxygen isotope and Ca-Mg ratio data. *Albertiana* 23, 11–22.

Zakharov, Y.D., Oleinikov, A., Kotlyar, G.V., Burago, V.I., Rudenko, V.S. & Dorukhovskaya, E.A., 1999b: First find of Early Permian goniatite in Southern Primorye. *Geology of Pacific Ocean* 14, 805–816.

Zakharov, Y.D., Ukhaneva, N.G., Ignat'ev, A.V., Afanasyeva, T.B., Buryi, G.I., Panašenko, E.S., Popov, A.M., Punina, T.A. & Cherbadzhi, A.K., 2000: Latest Permian and Triassic carbonates of Russia: New palaeontological findings, stable isotopes, Ca–Mg ratio, and correlation. In H. Yin, J.M. Dickins, G.R. Shi & J. Tong (eds.): *Permian–Triassic Evolution of Tethys and Western Circum-Pacific: Development in Palaeontology and Stratigraphy* 18, 141–171. Elsevier, Amsterdam.

Zakharov, Y.D., Borikina, N.G. & Popov, A.M., 2001: *Rekonstruktsiya uslovij morskoi sredy pozdnego paleozooya i mezozooya po izotopnym dannym (na primere severa Evrazii)* [The reconstruction of Late Palaeozoic and Mesozoic marine environments from isotopic data (evidence from north Eurasia)]. Dalnauka, Moscow. 112 pp. (in Russian).

Zakharov, Y.D., Biakov, A.S., Baud, A. & Kozur, H., 2005: Significance of Caucasian sections for working out carbon-isotope standard for Upper Permian and Lower Triassic (Induan) and their correlation with the Permian of North-Eastern Russia. *Journal of China University of Geosciences* 16 (2), 141–151.

Zakharov, Y.D., Smyshlyayeva, O.P., Shigeta, Y., Popov, A.M. & Zonova, T.D., 2006a: New data on isotopic composition of Jurassic-Early Cretaceous cephalopods. *Progress in Natural Science* 16, 50–67.

Zakharov, Y.D., Smyshlyayeva, O.P., Popov, A.M. & Shigeta, Y., 2006b: *Izotopnyj sostav pozdnemezoiskikh organogennych karbonatov Dalnego Vostoka* [Isotopic composition of Late Mesozoic organogenic carbonates of Far East]. Dalnauka, Vladivostok. 204 pp. (in Russian).

Zimina, V.G., 1977: *Flora rannei i pozdnei permi Yuzhnogo Primorye* [Flora of Early and Late Permian of South Primorye]. Moscow: Nauka. 127 pp. (in Russian).

Zimina, V.G., 1997a: Late Paleozoic flora of South Primorye and some problems of phytogeography. *Mémoires de Géologie (Lausanne)* 30, 89–108.

Zimina, V.G., 1997b: Sitsa flora from the Permian of South Primorye. In J.M. Dickins (ed.): *Late Palaeozoic and Early Mesozoic circum-Pacific events and their global correlation*, 66–86. Cambridge University Press, Cambridge.