This article was downloaded by: [NEICON Consortium]

On: 28 August 2009

Access details: Access Details: [subscription number 781557264]

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House,
37-41 Mortimer Street, London W1T 3JH, UK

GFF

Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title~content=t902829199

Permian to earliest Cretaceous climatic oscillations in the eastern Asian

continental margin (Sikhote-Alin area), as indicated by fossils and isotope data
Yuri D. Zakharov ?; Jingeng Sha °; Alexander M. Popov ?; Peter P. Safronov #; Svetlana A. Shorochova ¢;

'| Elena B. Volynets ¢; Alexander S. Biakov ¢; Valentina |. Burago ; Vera G. Zimina & Irina V. Konovalova '

| @ Far Eastern Geological Institute, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia °
LPS, Nanjing Institute of Geology and Palaeontolgy, Academia Sinica, Nanjing, P.R. China ¢ Institute of
Engineering and Social Ecology, Far Eastern State Technical University, Vladivostok, Russia ¢ Institute of

‘| Biology and Soil Sciences, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia ¢ North-
East Interdisciplinary Scientific Research Institute, Far Eastern Branch, Russian Academy of Sciences,
Magadan, Russia f Primorskaya Prospecting and Survey Expedition, Vladivostok, Russia

Online Publication Date: 01 June 2009

To cite this Article Zakharov, Yuri D., Sha, Jingeng, Popov, Alexander M., Safronov, Peter P., Shorochova, Svetlana A., Volynets,
Elena B., Biakov, Alexander S., Burago, Valentina I., Zimina, Vera G. and Konovalova, Irina V.(2009)'Permian to earliest Cretaceous
climatic oscillations in the eastern Asian continental margin (Sikhote-Alin area), as indicated by fossils and isotope
data',GFF,131:1,25 — 47

To link to this Article: DOI: 10.1080/11035890902867761
URL: http://dx.doi.org/10.1080/11035890902867761

PLEASE SCROLL DOWN FOR ARTICLE

Full ternms and conditions of use: http://ww.informworld. confterns-and-conditions-of-access. pdf

This article nay be used for research, teaching and private study purposes. Any substantial or
systematic reproduction, re-distribution, re-selling, |oan or sub-licensing, systematic supply or
distribution in any formto anyone is expressly forbidden.

The publisher does not give any warranty express or inplied or make any representation that the contents
will be conplete or accurate or up to date. The accuracy of any instructions, formulae and drug doses
shoul d be independently verified with primary sources. The publisher shall not be liable for any |oss,
actions, clainms, proceedings, demand or costs or danmges whatsoever or howsoever caused arising directly
or indirectly in connection with or arising out of the use of this material.



http://www.informaworld.com/smpp/title~content=t902829199
http://dx.doi.org/10.1080/11035890902867761
http://www.informaworld.com/terms-and-conditions-of-access.pdf

00: 41 28 August 2009

Downl oaded By: [ NEI CON Consortiun] At:

GFF volume 131 (2009), pp. 25-47.

Article

Permian to earliest Cretaceous climatic oscillations in the eastern
Asian continental margin (Sikhote-Alin area), as indicated by fossils
and isotope data

YURI D. ZAKHAROV!, JINGENG SHA?, ALEXANDER M. POPOV', PETER P. SAFRONOV',
SVETLANA A. SHOROCHOVA?, ELENA B. VOLYNETS*, ALEXANDER S. BIAKOV®, VALENTINA
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Zakharov, Y.D., Sha, J.-G., Popov, A.M., Safronov, P.P., Shorochova, S.A., Volynets, E.B., Biakov, A.S., Burago, V.L.,
Zimina, V.G. & Konovalova, 1.V., 2009: Permian to earliest Cretaceous climatic oscillations in the eastern Asian
continental margin (Sikhote-Alin area), as indicated by fossils and isotope data. GFF, Vol. 131 (Pt. 1-2, June), pp. 25-47.
Stockholm. ISSN 1103-5897.

Abstract: Palacozoological, palacobotanical and geochemical analyses of Lower Permian to the lowermost
Cretaceous sediments exposed in the southern Russian Far East (Bureya—Jiamusi—Khanka superterrane and
the Sergeevka terrane), and higher latitude areas (northern Russian Far East and Spitsbergen) suggest a direct
relationship with global climatic events defined by the data from oxygen-isotopic palaeotemperatures.
Several positive carbon-isotopic anomalies discovered within the uppermost Cisuralian, Guadalupian, early
Lopingian and Aalenian—Bajocian intervals are possibly connected to strong hydrological intermixing of
oceanic waters under the influence of considerable thermal gradients.
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Introduction
The interpretation of climatic change seen in the late Paleozoic to
middle Mesozoic deposits remains a matter for extensive
discussion (Francis 1994; Golonka et al. 1994; Larsson et al.
2000; Mei & Henderson 2001; Vajda 2001; Chumakov 2004; Chen
et al. 2005; Korte et al. 2005a, 2005b; Hyde et al. 2006; Shen et al.
2006; Galfetti et al. 2007; Yin et al. 2007; Jansson et al. 2008). The
southern Russian Far East (South Primorye, or Ussuri region, and
Lesser Hingan, Fig. 1) offers a highly favourable area for palaeo-
climatological investigation of Permian to Early Cretaceous marine
and terrestrial sequences, yielding diverse fossil fauna and flora.
The main aim of this study is to show the evidence of climatic
changes seen in the Sakmarian to Berriasian sediments of the
southern Russian Far East using articulate brachiopod, mollusc and
floral successions, correlated with global oxygen and carbon-
isotope events on the basis of published and original data.

Materials and methods

Invertebrate and plant remains, which compose the traditional
basis for marine and non-marine Permian to Lower Cretaceous

biostratigraphy, as well as original data from the isotopic
composition of some Permian organogenic carbonates are used
in this study for palaeoclimatic reconstruction. Certain data on
Permian plants and brachiopods and Late Triassic bivalve
molluscs of South Primorye were taken from Kiparisova (1972),
Burago & Kotlyar (1974), Burago (1979, 1983, 1986, 1990),
Kotlyar et al. (1989, 2006) and Okuneva (2002), respectively.
However, herein we have investigated Permian to Early
Cretaceous fossils, and analysed the carbon and oxygen isotopic
composition of Permian organogenic carbonates from the north
Far East Russia and Spitsbergen.

The following methods were used to determine diagenetic
alterations in the calcite: (1) visual signs; (2) degree of integrity
of microstructure under a SEM; (3) preliminary luminescent test
using a JXA-8200 (JEOL, Tokyo, Japan) microanalyser and (4)
preliminary metallic-element measurements. Results obtained
show that the analysed invertebrate shell material fulfils
diagenetic screening criteria and the samples were therefore
considered suitable for both carbon-isotope and, in some cases,
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Fig. 1. Distribution of Permian and Triassic macrofossils in different terranes of the Sikhote-Alin area, southern Russian Far East, showing
southeastern, eastern and northeastern configuration of the shallow-water sea basin, named the Ussuri-Lesser Hingan Sea, within the bounds of the
BJKH and the SR. Other terranes include: SM, Samarka; ZHA, Zhuravlevka-Amur; KM, Kema; NB, Nadanhada-Bikin; KH, Khabarovsk (based on
terrane maps of Golozubov (2006) and Kemkin (2006)). Localities: 1, Lesser Hingan, Bolshiye Churki; 2, Bikin River basin (Marevka and
Ulyanovka); 3, Malinovka River basin; 4, Krylovka River basin (Krylovka and Gornaya); 5, Pogranichnyj village; 6, Arsenyevka River basin
(Lagernyj); 7, Yakovlevka and Andreevka villages; 8, Dalnegorsk area (Nezhdanka); 9, Pavlovka River basin (Levaya Antonovka); 10,
Kavalerovsky Creek; 11, Razdolnaya River basin; 12, Ussurijsk town area (Komarovka and Rakovka); 13, Ussuri River headstream (Arkhipovka
village); 14, Perevoznaya River basin; 15, villages in the Razdolnoye area (Popovka, Kiparisovka, Alekseevka and Knevichanka); 16, Artyomovka
River basin; 17, Sergeevka River basin (Imalinovskaya, Tekhnichesky); 18, Kievka River basin; 19, Chernaya River basin; 20, Avvakumovka River
basin (Novonikolaevka village); 21, Peschanka River basin; 22, Artyom town area; 23, Western Amur Gulf (Atlasov); 24, Bogataya River basin; 25,
Amba River basin; 26, SE part of Vladivostok City (Pervaya Rechka and Groznyj); 27, Western Ussuri Gulf area (Tri Kamnya and Basargin); 28,
Smolyaninovo village; 29, Pilnikov Creek; 30, Russian Island; 31, E. Ussuri Gulf (Dunai and Golyj); 32, Senkina Shapka Cliff; 33, Abrek Bay area;
34, Nakhodka area (Nakhodka Reef, Tungus and Neizvestnaya bays); 35, Mount Sestra.

oxygen-isotope analysis. In Kungurian brachiopod shells Center of the Far Eastern Geological Institute (FEGI),
(Spitsbergen) with excellently-preserved fibrous microstructure, ~ Vladivostok. The laboratory gas standard was calibrated relative
some siliceous parcels were recognised in SEM (JSM—-6300) to calcite National Bureau of Standards (NBS) 19 and equals
and these were excluded from the isotope analysis. 1.8£0.10%0 for oxygen relative to the Vienna Pee Dee

Oxygen and carbon isotope measurements were made by Belemnite (VPDB) and —0.75%+0.10%¢ for carbon. Reprodu-
using a Finnigan MAT-252 mass spectrometer at the Analytical cibility of replicate standards was always better than 0.10%eo.
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In calculating temperatures a & '*0 of —1.2% VPDB (equivalent
to —1.0%0 SMOW) was thought to be appropriate (Savin 1977),
since we assume that icecaps were not present during Permian
times. Anderson & Artur’s (1983) scale was used for
palaeotemperature calculation from calcitic material.

Cathodoluminescence studies were carried out with a JXA-
8100 microanalyser (JEOL) coupled with SEM. Elemental
concentrations during preliminary measurements were deter-
mined by energy-dispersion X-ray spectrometer INCA Energy
350 (Oxford) at FEGI.

Observations and results

Geological setting

The main area of investigation was the Bureya—Jiamusi—
Khanka superterrane (BJKH) and Sergeevka terrane (SR, Fig. 1)
located between the Sino—Korean craton to the south and the
Sikhote—Alin fold belt to the east (Khanchuk et al. 1995;
Golozubov 2006; Kemkin 2006). A detailed description of
Permian to Jurassic facies and biostratigraphical units has been
presented elsewhere (Burago 1973, 1986; Zimina 1977, 1997a,
1997b; Kotlyar et al. 1989; Zakharov & Oleinikov 1994;
Markevich & Zakharov 2004; Markevich et al. 2005; V.A.
Zakharov et al. 2005; Kotlyar et al. 2006).

The Lower Permian (Sakmarian—Artinskian) plant-bearing
Dunai Village Formation in South Primorye comprises volcanic-
terrigenous strata, 1100-3900m thickness. The overlying
Kungurian plant, brachiopod and ammonoid-bearing Abrek
Bay and Pospelov Cape formations (several hundred metres
thick) and the Pilnikov Creek beds (180—1000m thick) are
composed of terrigenous and volcanic (small portion) deposits
of continental, lagoonal and nearshore origin. The Roadian—
Wordian plant, brachiopod and ammonoid-bearing Vladivostok
City Formation (570-1600 m thick) is dominated by volcanic
rocks and volcanoclastic and siliciclastic sediments of nearshore
and non-marine origin. The latest Wordian—Capitanian
Chadalaz Ridge Formation (900-1200m thickness) mainly
comprises siliciclastic and carbonate shallow-water deposits
with abundant marine invertebrates. The Wuchiapingian—
Changhsingian Lyudyanza Bay (about 720m thickness) and
Yastrebovka River formations (about 30 m thickness) and the
latest Changhsingian Kapreevka Village beds (about 150 m
thickness) mainly consist of siliciclastic and volcanoclastic
sediments, containing large carbonate build-ups with abundant
and diverse marine invertebrate fossils.

The Lower Triassic (Induan) Lazurnaya Bay Formation
(105 m thickness), found everywhere in the south Far East is
represented by coarse-grained clastics and sandstones with
lenses of coquina yielding numerous molluscan remains. The
early Olenekian formations (Tobizin and Schmidt Cape, about
130 and 40 m thick, respectively) in the BIKH superterrane are
comprised mainly of shallow-water marine sandy facies with
lenses of coquina, yielding abundant ammonoids. These
sequences are overlain by silty-pelitic facies of the Zhitkov
Cape Formation (82m thickness) with numerous calcareous
concretions, yielding abundant and diverse cephalopod faunas.
A similar silty-pelitic facies is common for both the lower
Olenekian and the upper Olenekian in the SR. The Anisian
Karazin Cape Formation (not less than 129 m thickness) in the
southern Russian Far East composed mainly of fucoid
sandstones with large septarian concretions, yielding abundant
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ammonoids. Ladinian deposits in the southern Far East (Sputnik
Station, Tractorny Creek and, apparently, Akhlestyshev Cape
formations), resting unconformably on the erosion surface of the
Anisian, are composed of siltstones, quartz sandstones and some
intercalating mudstones, yielding rare mollusc and amphibian
remains. Late Triassic deposits lie unconformably upon the
Permian or Ladinian in the BJKH superterrane. The early
Carnian Kiparisovo Village Formation is represented by
lagoonal sediments with halobiid bivalves and rare brachiopods
and is conformably overlain by late Carnian non-marine deposits
of the coal-bearing Sadgorod Station Formation. Marine Carnian
siltstones with rare ammonoids are known only in exotic blocks
of terrigenous rocks in the SR and Taukha terranes. The Norian
in the BJKH superterrane is represented by intercalation of
marine and non-marine terrigenous sediments (early—middle
Norian Peschanka River, middle Norian Amba River (coal-
bearing) and late Norian Perevoznaya River formations),
overlain by possible Rhaetian conglomerate and sandstone.
Norian marine sediments in the SR are known as the Imalinov
Creek Series.

The Lower Jurassic (Hettangian) Shitukhe River Formation,
250-300 m thickness, represented by non-marine and nearshore
marine plant and mollusc-bearing terrigenous deposits in the SR
occurs with an erosional and small angular non-conformity on
Anisian marine sediments of the Shimeuza Village Series.
The Triassic—Jurassic boundary is not exposed in the area. The
Sinemurian mollusc-bearing beds, 175m thickness, of the
Trudny Peninsula Member in the SR are represented by
conglomerate and siltstone. The 480m thick Sinemurian—
Pliensbachian Demidovo Village Formation in the SR terrane
has been divided into lower and upper members. The lower
member (300 m thickness) is represented by siltstones, grey-
wackes with the Sinemurian ammonoid Coronoceras, acidic tuff
and tuffite interbeds. The upper member (180m thickness)
occurs conformably upon the lower member and was
transgressive over the Middle Triassic beds of the Shimeusa
River Series. It consists mainly of sandstones and the
Pliensbachian ammonoid Arieticeras has been identified in
these successions. The Sinemurian—upper Toarcian plant and
mollusc-bearing sequences (60—100m thick) in the SR terrane,
consisting essentially of submarine sandstones and occurs
through erosional planar disconformity above the Shitukhe River
Formation. The Pliensbachian—upper Toarcian bivalve-bearing
Komarovka River Formation (about 90 m thickness), consisting
of greywacks with thin interbeds of gravelstone, conglomerates
and palitic tuffs, occurs with an erosional contact on top of the
Triassic in the BJKH superterrane. The upper Toarcian—lower
Bathonian Bonivur Creek Formation (30-400m thick),
represented by shallow-water bivalve-bearing marine terrige-
nous sequences occurs conformably upon the Komarovka River
Formation, or transgressively on older formations, including the
Upper Triassic in the BJKH superterrane. The upper Aalenian—
Bathonian (600 m thickness) plant-bearing and coal-bearing
non-marine and submarine sediments of the Ananyevka River
series in the BJKH superterrane are represented mainly by
sandstones, and rarer siltstones, tuffs, coaly-clayey schists, and
coal; their contact with the underlying formation is unknown.
The Bathonian Monakino Village plant-bearing series (more
than 240 m thickness) is non-marine and occurs disconformably
through angular unconformity on older formations in the BJKH
superterrane. The series is divided into lower (rhyolitic) and
upper (terrigenous-volcanic) members. The middle—upper



00: 41 28 August 2009

Downl oaded By: [ NEI CON Consortiun] At:

28 Zakharov et al.: Permian to earliest Cretaceous climatic oscillations

Bathonian Rakovka series (255-350 m thickness) in the BJKH
superterrane consists of submarine greywackes. The middle
Tithonian—lower Berriasian Chigan Cape Formation (252m
thickness) in the SR terrane consists mainly of shallow-water
sediments (conglomerates, fucoid sandstones, siltstones and silty
claystones with thin coal lenses), resting unconformably on older
formations, including the middle Anisian. However, the lower
Berriasian follows conformably on Tithonian sediments, within
the same formation (Konovalova & Markevich 2004).

Palaeoclimatic evidence from Permian fossils

Sakmarian to Artinskian

Middle Early Permian sediments of the Dunai Peninsula
Formation are characterised by the absence of coal. The Dunai
flora consists of typical Siberian elements (Paracalamites,
Sphenopteris, Angaropteridium, Cordaites, Rufloria, Even-
kiella, Gaussia, Krylovia and Xiphophyllums (Eliseeva &
Radchenko 1964; Meyen 1966; Taschi & Burago 1974; Zimina
1977, 1997a; Burago 1979). Thus, climatic evidence based on
fossil plants and the lithology of the upper part of the
formation suggests that South Primorye was warm-temperate
and arid during the Sakmarian and much of the Artinskian
(Fig. 2).

Kungurian

In the early to middle Kungurian, South Primorye continued to
be located in the warm-temperate climatic zone based on the
composition of the fossil plant assemblages encountered in
the lower part of the Abrek Bay and the lower part of the
Pospelov Cape formations in the Abrek Bay area and Russian
Island (Fig. 1, loc. 30 and 33). The sediments yield an
abundant and diverse Siberian floristic association (Spheno-
phyllum, Paracalamites, Annularia, Annulina, Koretrophyllites,
Tschernovia, Spheopteris, Zamiopteris, Cordaites, Rufloria,
Crassinervia, Nephropsis, Vojnovskya, Gaussia, Wattia,
Samaropsis, Cordaicarpus, Skokia, Sylvella) (Burago &
Kotlyar 1974; Burago 1979, 1983; Zimina 1997a).
The paleoclimatic interpretation of a warm-temperate climatic
zone for the early Kungurian is in good agreement with the
presence of the Boreal type ammonoid (Epijuresanites)
(Zakharov et al. 1999b) and brachiopods (Rhynoleichus,
Primorewia and Tomiopsis) (Kotlyar et al. 2006) in the middle
Kungurian Pilnikov beds of the Partizanskaya River Basin
(Fig. 1, loc. 29).

The first appearance of Cathaysian elements (Sphenopteris,
Cladophlebis, Protoblechnum and Pterophyllum) in South
Primorye was documented for the late Kungurian portion of the
Pospelov Cape Formation in the Tikhaya Bay, Mingorodok
and Russian Island areas (Zimina 1997a; Kotlyar et al. 2006)
and western Primorye (Burago & Kotlyar 1974; Burago 1979,
1983, 1986). These elements in the association constitute about
5%; other genera are represented by the Siberian elements;
Paracalamites, Koretrophyllites, Prynadaeopteris, Pecopteris,
“Callipteris”, Odontopteris, Comia, Cordaites, Rufloria
Psygmophyllum, Samaropsis, Cardiocarpus, Sylvella and
others. This suggests a short-term climatic optimum during
the late Kungurian. However, more research is needed to define
the position of the Kungurian—Roadian boundary in the South
Primorye region.

GFF 131 (2009)

Roadian to Wordian

Up to 34% of the Cathaysian macroflora (Lobatannularia,
Annularia, Schizoneura, Sphenophyllostachus, Pecopteris, Neu-
ropteridium, Taeniopteris, Pterophyllum, Bicoemplectopteri-
dium and Rhipidopsis) has been documented in the Vladivostok
floristic assemblage (Burago 1983, 1986, 1990) in the
Vladivostok City Formation and sequences corresponding to
the lowermost part of the Chadalaz Range Formation. Other
components in the floral assemblage found in the Pervaya
Rechka (Fig. 1, loc. 26) and Shevelevka Village sections and in
some localities of south-western Primorye are Prynadaeopteris,
Callipteris, Comia, Compsopteris, Protoblechnum, Rufloria,
Crassinervia, Nephropsis, Psygmophyllum, Dicranophyllum,
Mengrammia? and others (Burago 1983, 1986; Zimina 1997a).
This would support an almost subtropical climate in the southern
Russian Far East during the Roadian—Wordian, with the
exception of the very end of the Wordian (Monodiexodina
sutschanica—Neomisellina dutkevichi Zone), characterised by
domination of Boreal-type brachiopods in the marine realm
(Kotlyar et al. 2006).

Latest Wordian to early late Capitanian

The Sitsa Flora of the Chandalaz Range Formation of the
Partizanskaya River basin is considered to be of a Midian (latest
Wordian to Capitanian) age (Burago 1983, 1986; Kotlyar et al.
1989, 2006) based on the macroflora such as Annularia,
Asterotheca, Prynadaeopteris, Peltaspermum, Pursongia, “Cal-
lipteris”, Comia, Cordaites, Rufloria, Psygmophyllum, Ginkgo-
phytopis and some others. The Capitanian climate has been
interpreted as cool-temperate and humid as the Sitsa assemblage
yields only 14-22% of Cathaysian elements, e.g. Taeniopteris,
Lobatannularia and as it is further characterised by the
appearance of the Siberian elements; Annularia? jeruunako-
vensis Neuburg, A.? sibirica Radczenko, Psygmophyllum
sibiricum (Zalessky), Cordaites insignis (Radczenko). Addition-
ally, some coal layers are present in the Sitsa plant-bearing beds.
However, Zimina (1997b) interpreted a somewhat older age for
the Sitsa flora based on its taxonomic composition. Abundant
Capitanian marine fossils (foraminifera, brachiopods and
ammonoids) from South Primorye and the Bolshiye Churki
area (Fig. 1, loc. 1) provide evidence for the Tethyan connection
of both the South Primorye and Amur River areas (Kotlyar et al.
1997, 2006).

Wuchiapingian to Changhsingian

Late Permian continental sediments are unknown in the South
Primorye SR terrane; only rare plant remains (Taeniopteris) have
been reported from marine sediments in the area (Burago 1986).
Judging from these traces of the Taeniopteris flora in the
Lyudyanza Bay Formation and the lack of Cordaites, Burago
(1986) interpreted a warm climate with increasing humidity in
South Primorye during the Late Permian.

Analysing the marine fossils, we also discern minor
temperature fluctuations in the southern Far East during most
of the Wuchiapingian to early late Changhsingian, because the
Stacheoceras orientale and Xenodiscus subcarbonarius beds,
early Wuchiapingian limestones of the Nakhodka Reef (Fig. 1,
loc. 34) yield the typical Tethyan-type ammonoids Neogeoceras,
Stacheoceras and Xenodiscus (Zakharov & Pavlov 1986a),
as well as brachiopods (Kotlyar et al. 2006) and diverse
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from paleofloral, brachiopod, ammonoid, bivalve and carbon-isotope data.

Zones:

tropical-subtropical sphinctozoans (Boiko et al.
The middle Wuchiapingian Cyclolobus kiselevae Zone in
South Primorye and the late Wuchiapingian Eusanyangites
bandoi beds are also characterised by typical Tethyan fossils
comprising ammonoids, including araxoceratids (Zakharov

[IIT] subtropical

RN

1991).

tropical-subtropical

29

1983; Zakharov & Pavlov 1986a, 1986b), and small foraminifera
(Vuks & Chedia 1986).

The warmest Permian interval of the Southern Russian Far
East seems to have been the latest Changhsingian based on
the warm climate-loving ammonoid assemblage including
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Changhsingoceras, Huananoceras, Liuchengoceras and Sino-
celtites). This assemblage is similar to that of the Cathaysian
Province, as discovered in both the Huananoceras gianjiangense
Zone of the Partizanskaya River Basin and the Pleuronodocer-
atidae-Liuchengoceras beds of the Artymovka River Basin
(Zakharov & Oleinikov 1994). This conclusion is supported by
the discovery of brachiopod species (Crurithyris flabelliformis
Liao and Araxathyris minor Grunt), common for the uppermost
Changhsingian in South China, in the Huananoceras gianjian-
gense Zone of the Partizanskaya River Basin (Zakharov &
Oleinikov 1994; Zakharov et al. 1997a).

Palaeoclimatic evidence from Triassic fossils

Induan to Olenekian

On the Russian Island, South Primorye, Triassic basal
conglomerates overlay Roadian plant-bearing sediment of the
Lower Vladivostok City Formation. Erosion of several middle—
late Permian sediments (Upper Vladivostok, Chandalaz and
Lyudyanza) seems to be one of the events coeval to the largest
end-Permian regression and widespread extensive volcanism
(Yin et al. 2007), which led mainly to significant aridity and
climate warming during the Early Triassic.

A common, Early Triassic plant adapted to arid conditions
from the Southern Russian Far East is Pleuromeia encountered
in the lower part of the upper Olenekian (Neocolumbites insignis
Zone of the Zhitkov Cape Formation (Krassilov & Zakharov
1975). According to rare palacobotanical evidence (Cladophle-
bis gracilis Sze, V.I. Burago’s determination, personal
communication), obtained from the upper part of the upper
Olenekian (Subfengshanites multiformis Zone), a change in
climatic conditions from arid to humid took place in the
Southern Far East by the end of the Olenekian.

Induan and Olenekian ammonoids from the Southern Far East
are represented by Tethyan (Glyptophiceras, Owenites, Pro-
sphingitoides, Tirolites, Columbites, Arnautoceltites, Prenkites
and some others) and cosmopolitan (e.g. Hedenstroemia,
Euflemingites, Arctoceras, Wasatchites) elements, although
some Boreal-type elements (Olenekoceras, Northophiceras
and Swvalbardiceras) are reported from the lower part of the
upper Olenekian (Zakharov 1997a). Early Triassic articulate
brachiopods Abrekia, Paranorellina, Hustedtiella, “Fletcher-
ithyris”, Lepismatina (Bittner 1899; Dagys 1974), Piarorhynch-
ella? and Lissorhynchia (A.M. Popov, unpublished data)
reported for South Primorye are also common in Tethyan
areas but among them, only Hustedtiella spitsbergensis has been
found at higher latitudes in Spitsbergen (Dagys 1974). This
assemblage may reflect a position of the Southern Russian Far
East in the subtropical climatic zone during the Early Triassic.

Anisian to Ladinian

Based on data of phosphate distribution in the Far East and in
Arctic Siberia, the Early Triassic arid-climate was replaced by a
humid one in this extensive territory during the middle Anisian,
possibly in relation to a sea level rise (Zakharov & Shkolnik
1994). Most of the cosmopolitan elements in the southern Far
East, as well as in Arctic Siberia, have been documented in
the lowermost Anisian Ussuriphyllites amurensis Zone of the
Karazin Cape Formation, which is characterised by the
presence of the ammonite genera Parasageceras, Ussiriphyl-
lites, Megaphyllites, Leiophyllites, Ussurites, Paradanubites,
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Paracrochordiceras, Prohungarites, Arctohungarites, Salterites
and Tropigastrites. We interpret this assemblage as reflecting a
warm and uniform climate for the beginning of the Anisian.
The earliest Anisian sediments of Russian Island contain abundant
shark teeth, which additionally confirm our assumption.

Early and mid-Triassic cephalopod assemblages, ammonoids
of the BJKH superterrane and SR terrane areas, mainly exhibit
Tethyan-type genera or cosmopolitan ones. This interpretation is
in agreement with data from early Anisian brachiopods from
South Primorye (Spirigerellina cf. stoliczkai (Bittner), Lepis-
matina tsinghaiensis (Yang and Yin) and Costinorella
zharnikovae Dagys) and the early Ladinian (Spirigerellina
stoliczkai (Bittner), Schwagerispira ex gr. schwageri (Bittner),
Plectoconcha wvariabilis Dagys, Piarorhynchella cf. trinodosi
(Bittner), Costirhynchopsis tienchungensis (Yang and Yin),
C. cf. breviplicata (Yang and Yin), Lepismatina cf. pauciplicata
(Yang and Yin) and L. tsinghaiensis (Yang and Yin) (Dagys
1974; Popov 2008). All of them, with the exception of
representatives of the cosmopolitan genus Lepismatina, are
common Tethyan elements.

On the contrary, during the late Ladinian, water temperatures
of the Ussiri-Lesser Hingan basin apparently dropped sharply,
based on the presence of the typical Boreal brachiopod genus
Pennospiriferina that has been reported from the upper part of
the upper Ladinian in South Primorye (Dagys 1965). The basin
was apparently located within the warm-temperate climatic zone
during late late Ladinian time.

Carnian

The early Carnian floral assemblage of the Kiparisovo Village
Formation of South Primorye (southern part of the BJKH
superterrane) yields diverse cycadophytes (Otozamites, Cteno-
zamites, Pseudoctenis, Anomozamites, Nilssonia and Taeniop-
teris), ferns (Todites, Clathropteris and Cladophlebis),
equisetaceans (Equisetum and Neocalamites), conifers (Podo-
zamites and Cycadocarpidium) and ginkgoaleans (Baierella;
Shorochova 1997; Volynets & Shorochova 2006, 2007).

The investigated flora is derived from the coal-bearing
Sadgorod Station Formation of South Primorye (southern part of
the BJKH superterrane and the SR terrane) and consists of
mainly bryophytes, ferns (Dictyophyllum and Hausmannia),
ginkgoales (Baiera, Glossophyllum and Desmiophyllum)
czekanowskiales and diverse coniferales (Podozamites and
Pityophyllum) (Shorochova 1997; Volynets & Shorochova 2006,
2007).

The great abundance of coniferales and ginkgoales and the
presence of cycadophytes in the early Carnian sediments of
the Kiparisovo Village Formation indicate a warm-temperate
and arid climate at the beginning of the Carnian in South
Primorye (Volynets & Shorochova 2006, 2007). However, the
predominance of czekanowskiales and coniferales (Pinaceae),
abundant large-stemmed Neocalamites and subordinate cyca-
dophytes and ferns (Camptopteridacea) in the late Carnian floral
assemblage of the region are consistent with a warm-temperate
and humid climate (the latter also in line with the commercial
Sadgorod Station Formation coal resources).

Early Norian
The floral association from the early Norian Imalinov Creek
Series of the SR terrane in South Primorye is characterised
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by a high diversity of cycadophytes (Pterophyllum, Nilssonia,
Ctenis, Pseudoctenis and Taeniopteris), an abundance of
coniferales (Elatocladus and Podosamites), presence of rare
coniferale Cheirolepidiaceae, as well as ferns, ginkgoales,
czekanowskiales (Phoenicopsis, Leptostrobus and Ixostrobus),
horsetails and pteridosperms (Volynets & Shorochova 2006;
Volynets et al. 2006). This assemblage is indicative of a warm-
temperate to subtropical and more or less humid climate; further
supported by the presence of thin coal-beds in the Imalinov
Creek Series (Volynets & Shorochova 2006, 2007; Volynets et al.
2006, 2008).

The rare early Norian ammonoids Norosirenites and
Yanotrachiceras found in the SR terrane (Sergeevka River
Basin) are typical Boreal genera; Paratrachyceras from the
Levaya Antonovka River of the same terrane is, however,
common for the Tethys (Zakharov 1997b). Brachiopods from the
early to middle Norian (lower to middle part of the Peschanka
River Formation of the southern part of the BJKH superterrane)
include, e.g. Laevithyris, Kolymithyris and Spondylospiriferina
and are typical Boreal elements, while the genus Piarorhynch-
ella is common for the Tethys.

Based on plant, brachiopod and ammonoid data, we assume
that South Primorye was located between the warm-temperate
and subtropical climatic zones during the early Norian.

Middle Norian

The Amba flora, characterised by having the highest taxonomic
diversity among the Triassic assemblages, was discovered in the
middle Norian Amba River Formation of the southern part of the
BJKH superterrane (Amba, Razdolnaya, Komarovka, Bystraya,
Malinovka, Marevka and Bikin River basins; Fig. 1, loc. 25).
In the middle Norian sediments czekanowskiales are replaced by
ginkgoales Sphenobaiera and pteridosperms (Thinnfeldia,
Imania and Tudovakia). Ferns and cycadophytes, including
Clathropteris, Camptopteris and Dictyophyllum, Pterophyllum,
Williamsoniella, Ctenis, Nilssonia and Taeniopteris, became
the dominating elements (Shorochova 1997; Volynets &
Shorochova 2006, 2007). This indicates that the coal-bearing
Amba River Formation was formed in humid conditions in a
tropical-subtropical climate.

Late Norian
All the known late Norian brachiopods (Orientospira gregaria
(Dagys), Viligella rotunda (Tuchkov), Kolymithyris kolymensis
(Moisseev), Laballa suessi (Moisseiev), Laevithyris rossochae
(Dagys), Ochotathyris ochotica (Dagys), Spondylospiriferina sp.
and Rhaetina pyriformis (Suess) from the Perevoznaya River
Formation of the south part of the BIKH superterrane, with the
exception of the latter (Rhaetina — a Tethyan element), are typical
representatives of the Boreal realm (Popov 2008). They are
everywhere, in the large area of the Southern Russian Far East
(Fig. 1, loc. 11, 14 and 15), associated with Monotis ochotica
(Keyserling) and some other bivalves common for the Boreal
realm. Data from both brachiopods and bivalves show that
significant cooling took place at the very end of the Norian, when
the analysed basin was located in the warm-temperate climatic
zone (Boreal realm).

The Rhaetian portion of the Upper Triassic has not been
investigated palacontologically in either the BJKH superterrane
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or the SR terrane, but only in the reef facies of the adjacent
Taukhe terrane (Fig. 1, loc. 8; Punina 1999).

Palaeoclimatic evidence from Jurassic—Early
Cretaceous fossils

Liassic

In the Hettangian—earliest Sinemurian floras, 39 taxa have been
identified in an area including the Shitukhe River Formation of
the Petrovka and Litovka River basins, SR terrane (Krassilov &
Shorochova 1975; Volynets 2008) and a small portion of the
lower part of the Petrovka River Formation of the Dushkino
Passage, SR terrane (Konovalova & Markevich 2004).
The macrofloral assemblage consists of ferns (Cladophlebis, 6
spp.; Marattiopsis, 1 sp.; Phlebopteris, 1 sp.; Clathropteris, 1
sp.; Hausmannia, 1 sp. and Todites, 1 sp.), cycadophytes
(Pterophyllum, Ctenis, Nilssonia and Taeniopteris), coniferales
(Podozamites, Cycadocarpidium, Pityophyllum and Elatocla-
dus), ginkgoales (Ginkgoites, Baiera and Sphenobaiera),
czekanowskiales (Czekanowskia and Phoenicopsis). The
presence of Hettangian tropical-subtropical taxa such as
Clathropteris, Phlebopteris, Marratiopsis, Podozamites and
Cycadocarpidium and abundant Ctenis and Pterophyllum reflect
paleoecological conditions close to the humid subtropics during
the Hettangian to probably the earliest Sinemurian.

By contrast, early Sinemurian sediments of the Trudny
Peninsula Formation in the Neizvestnaya Bay section, SR
terrane are characterised by the presence of the sub-boreal and
boreal ammonoid Angulaticeras (Gydanoceras) and the bivalve
Pseudomytiloides rassochaensis Polubotko, common in the
upper Sinemurian Otapiria limaeformis Beds of the Boreal realm
(Sey & Kalacheva 1980; Konovalova & Markevich 2004).

Late Pliensbachian sediments of the Okrainka Village
Formation (lower part) exposed in the Izvilika River basin, SR
terrane, are characterised by the mixed Tethyan-Boreal
ammonoid fauna. Among Tethyan ammonoids, Arieticeras,
Fontanelliceras and Paltarpites can be recognised, while
Protogrammoceras represents a cosmopolitan species. Ammo-
noid species, common for the Boreal realm include Amaltheus
stokesi (Sowerby) in the mentioned assemblage. A similar, but
more restricted assemblage (Arieticeras, Fontanelliceras and
Protogrammoceras) has been documented in contemporaneous
sediments of the Petrovka River Formation of the Litovka River,
SR terrane (Sey & Kalacheva 1980).

Subtropical conditions are presumed also during the Toarcian
in South Primorye based on the abundance of the thermophilous
trigoniid bivalve Vaugonia in sediments of the Komarovka
River and Bonivur Creek formations of the Komarovka River
basin (Konovalova & Markevich 2004) and the occurrence
of the Tethyan ammonoid Arieticeras in coeval deposits of
the Izvilinka River, both in the SR terrane (Sey &
Kalacheva 1980).

Aalenian to Bathonian

Data on the Aalenian to Bathonian fossil flora of the Alexeevka
River (BJKH superterrane), Ananyevka River (upper part) and
Monakino Village (lower part) series are accounted for in
Volynets (1999, 2008). The macrofloral assemblage is
represented by 81 taxa (Volynets 2008), represented by;
ferns 28 spp. (Sphenopteris, Cladophlebis, Klukia, Cyathea,
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Osmundopsis, Phlebopteris, Ruffordia, Dicksonia, Coniopteris,
Onychiopsis, Adiantopteris and Acrostichopteris); coniferales,
17 spp. (Podozamites, Araucarites, Cunninghamia, Pityophyl-
lum, Brachyphyllum, Elatocladus, Coniferites and Conites);
cycadophytes, 17 spp. (Otozamites, Dictyozamites, Cycadolepis,
Anomozamites, Ptilophyllum, Zamites, Nilssonia and Pseudoc-
tenis); pteridosperms, a single species of Thinnfeldia; Cayto-
niales, four species of Caytonia and Sagenopteris; ginkgoales,
two species of Baiera and Pseudotorellia; czekanowskiales,
three species of genera Czekanowskia and Leptostrobus; and
some others.

The macrofloral assemblages are indicative of warm and
medium humid paleoecological conditions for the Bathonian of
the BJKH superterrane. Additional paleoclimatological
evidence for a warm-temperate to subtropical Middle Jurassic
in this area is provided by the presence of the Aalenian—
Bajocian Boreal inoceramid bivalves Retroceramus jurensis
(Koschelkina), Retroceramus cf. lucifer (Eichwald) and
Retroceramus aff. elegans (Koschelkina) (Konovalova &
Markevich 2004) in the Bonivur Creek Formation of Strelk-
ovaya Mouth, SR terrane, in association with the cosmopolitan
ammonites (Holcophylloceras and Lytoceras) and rare Tethyan
trigoniid bivalves (Vaugonia) (Sey & Kalacheva 1980, 1981;
Konovalova & Markevich 2004).

Upper Jurassic to lowermost Cretaceous

Callovian to Kimmeridgian marine faunas from South Primorye
are absent with only a continental regime during the Callovian,
and intensive erosion starting from the Oxfordian in this region;
only restricted evidence on Callovian plant fossils (Pseudocycas
sp.) has been reported (Markevich et al. 2008). The Oxfordian—
Kimmeridgian part of the marine Dongrong Formation in the
neighbour area of northeast China is characterised by the Boreal
Buchia cf. concentrica-B. tenuistriata assemblage (Sha 2007).

There is no palaeontological evidence from the lower part of
the lower Tithonian portion of the Chigan Cape Formation
exposed at the eastern Ussuri Gulf, SR terrane. However, the
lower—upper Tithonian part of the Dongrong Formation in
eastern Heilongjiang Province, northeast China is characterised
by the Buchia cf. mosquensis-B. cf. rugosa assemblage (Sha
2007). The middle Tithonian part of the Chigan Cape Formation
in South Primorye is characterised by mixed Boreal-Tethyan
bivalve fossils among which are buchias, common for the Boreal
realm (Buchia mosquensis (Buch), B. rugosa (Fisch.) and
others); thermophilose trigoniid bivalves (Jotrigonia) are
dominant. This part additionally yields ammonoids regarded
as Tethyan taxa (Semiformiceras, Glochiceras?, Pseudolisso-
ceras, Haploceras, Parapallasiceras, Sublithacoceras, Coron-
goceras, etc.) and cosmopolitan (Lithacoceras, Subplanitoides,
“Partschiceras”, Aulacosphinctoides, Torquatishinctes?, Aula-
cosphinctes, Himalayites, Holcophylloceras, Virgatosphictes,
Subplanites and “Metahaploceras”) (Sey & Kalacheva 1980,
1981; Konovalova & Markevich 2004).

Presumed cooler conditions prevailed in South Primorye at the
very end of the Jurassic, because in the latest Tithonian portion
of the Chigan Cape Formation only Buchia “piachii” Gabb, B.
fischeriana (Orbigny), and B. ex gr. fischeriana (Orbigny),
common for the Boreal realm have been found (Konovalova &
Markevich 2004). A similar Boreal assemblage (Buchia
russiensis—B. firscheriana) has been recently discovered in the
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lower part of the Dong’anchen Formation of the adjacent area
(eastern Heilongjiang Province, northeastern China; Sha 2007).

However, this was followed by warmer, more likely
subtropical conditions at the beginning of the Cretaceous,
because the lower Berriasian portion of the Chigan Cape
Formation yields only Tethyan (Pseudosubplanites and
Dalmasiceras) and cosmopolitan (Berriasella) cephalopods
(Zakharov et al. 1996; Sey & Kalacheva 1999).

Carbon-isotope composition of Permian—

Triassic organogenic carbonates

Some variation in the '*C/'*C ratio in marine organogenic
carbonates is related to variations of different environmental
factors, such as the carbon cycle balance, upwelling and primary
productivity, and therefore it is usually difficult to separate the
effect of each of these factors, especially for deep-water conditions.
However, when worldwide carbon isotope shifts are observed only
in shallow-water carbonates, they are generally attributed to
change in primary productivity (Alcala-Herrara et al. 1992).
Contrary to Isozaki’s et al. (2007) conclusion, our own results
(Zakharov et al. 2000, 2001; Y.D. Zakharov et al. 2005) show that
Permian positive carbon-isotopic anomalies seem to be con-
temporised with climatic optima and perhaps with transgressions.
We personally have recorded the abnormally high & '*C values in
organogenic carbonates obtained from 22 levels of the Kungurian,
Roadian, Wordian, Capitanian, Wuchiapingian, Changhsingian,
Induan, Olenekian and Anisian of different regions of the former
USSR, including the Russian Far East (Zakharov & Biakov 2008,
Fig. 32). Recently, we obtained additional information on isotopic
composition of organogenic carbonates from the lower Capitanian
(Parafusulina stricta Zone) of the Barabash area, Induan (Abrekia
beds) of Abrek Bay (Fig. 1, loc. 33), and the lower Ladinian
(Sputnik Formation) of the Atlasov Cape area (Fig. 1, loc. 23).
The positive carbon-isotopic anomaly discovered in the Tirolites-
Amphistephanites Zone in Russian Island (Zakharov et al. 2001,
Fig. 14) is interpreted by us as connected with the middle
Olenekian transgression and thermal optimum. Positive anomalies
from the same level were discovered also in the North Caucasus
(Belaya—Rufabgo, Kapustina and Svinyachia; Zakharov et al.
2001, Figs. 9 and 10) and South China (Tong & Zhao 2005). Tong &
Zhao (2005) have remarked that the above-mentioned middle
Olenekian event was followed by a gentle decrease in 8 '*C values,
which might have resulted from the local tectonic setting combined
with a regression in the region.

Figs. 3—6 (see & '*C anomaly column) show the highly irregular
location of the positive carbon-isotopic anomalies discovered
within the Sakmarian—Rhaetian interval. They are located most
frequently in the upper Kungurian, upper Wordian, Capitanian,
Wauchiapingian and also in the Induan—lowest Anisian interval.
By contrast, the Sakmarian—middle Kungurian, Roadian—middle
Wordian, middle—upper Changhsingian intervals and major parts
of the Middle and Upper Triassic are characterised by
comparatively rarer positive carbon-isotopic anomalies.

Correlation of oxygen-isotope
(palacotemperature) events
Gzhelian to middle Kungurian interval

Comparatively cool temperature conditions calculated for the
latest Carboniferous, Gzhelian, of the South Urals (Zakharov et al.
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Fig. 3. Correlation of the Lower Permian of the southern Russian Far East using available oxygen and carbon-isotope data. Positive carbon-isotopic
anomalies: 1, Gzhelian (Grossman et al. 1991); 2, Early Permian (Artinskian) (Rao 1988; Zakharov et al. 1997b); 3, late Kungurian (Korte et al.
2005a, 2005b); 45, late and the latest Kungurian (original data from Spitsbergen and the northern Russian Far East).

2001; 13.7-18.9°C) (Fig. 3) continued in middle latitudes mainly
until the late Kungurian, with the potential exception of some
Artinskian intervals (Korte et al. 2005a). This is coincident with the
development of Boreal floral associations of the Dunai and Lower
Abrek formations in South Primorye, as well as the Boreal marine
assemblage of middle Kungurian Pilnikov Beds in the same area.

Late Kungurian interval
During the excursion on the Festingen section in Spitsber-
gen (Fig. 1), organised for the Boreal Triassic Conference

(Longyearbyen, August 2006), one of the authors (Y. Zakharov)
collected a few brachiopod (athyridid and Rhombospirifer? sp.)
shells with excellently preserved microstructure (Fig. 7) from
the Vgringen Member of the Kungurian to Capitanian?
Wauchiapingian Tempelfjorden Group exposed at Starostin
Cape (Worsley 2006). The age of the brachiopod shells analysed
is considered to be late Kungurian (G.V. Kotlyar, personal
communication).

The excellently-preserved fibres of the secondary
layer, combined with Mg (1400-3300mg/kg) and Na
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Fig. 4. Correlation of Middle—Upper Permian of the southern Russian Far East with available oxygen and carbon-isotope data. Positive carbon-
isotopic anomalies: 6, late Roadian (original data from northern Russian Far East); 7, late Wordian (Korte et al. 2005a, 2005b and original data from
northern Russian Far East); 8—12, Capitanian (original data from northern Russian Far East); 13—15, Early Wuchiapingian (Y.D. Zakharov et al.
2005 and original data from northern Russian Far East); 16, late Wuchiapingian (Y.D. Zakharov et al. 2005); 17—19, Changhsingian (Y.D. Zakharov
et al. 2005 and original data from northern Russian Far East). Additional designations as in Fig. 3.
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Fig. 5. Correlation of Lower—Middle Triassic of the southern Russian
Far East with the available oxygen and carbon-isotope data. Positive
carbon-isotopic anomalies: 20, early Induan (Y.D. Zakharov et al. 2005;
Richoz 2006); 21, late Induan (Altudorei 1999; Zakharov et al. 2000);
22, early Olenekian (Richoz 2006); 23, middle Olenekian (Altudorei
1999; Zakharov et al. 2000; Payne et al. 2004; Galfetti et al. 2007;
Horacek et al. 2007); 24, early Anisian (Altudorei 1999; Zakharov et al.
2000); 25, late Ladinian (Altudorei 1999; Zakharov et al. 2000).
Additional designations as in Figs. 3 and 4.

(2200-2900 mg/kg) content (Fig. 8), confirm the unusually good
preservation of the investigated shell because these concen-
trations are within the range of modern terebratulid brachiopods
(Brand et al. 2003). A relatively high value for Fe (10,900 mg/kg)
was found in the carbonates by the dispersion energy X-ray
spectrometer at only one point (Fig. 7D, point 2, Fig. 8, spectrum 4)
out of 32, indicating only local diagenetic alteration.

The oxygen isotope data derived from the excellently
preserved parts of the brachiopod shells display a range of
values from — 3.1 to —2.6%0 (V—-PDB), showing shallow-water
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palacotemperatures not lower than 23.1-25.9°C (Table 1).
Incidentally, we would like to note that abnormally high & '*C
values (6.5—-7.2%0) were discovered in all five samples collected
from the best preserved areas of the brachiopod shells, which
might have been biased by high-biological productivity of the
seas of that time. If such high temperatures existed in the higher
latitude Spitsbergen area, it was caused by short-term warming
at the very end of the Cisuralian, which agrees with
palaeobotanical records from the upper part of the Pospelov
Cape Formation in South Primorye, but seems to be in
contradiction with the oxygen-isotope data from the middle
Kungurian to middle Wordian of the Sydney Basin in Australia
(Korte et al. 2008), which reflects a cooling phase during the late
Kungurian to Roadian in the Southern Hemisphere. Correlation
of this event is still uncertain.

Roadian to Capitanian interval

We have recently calculated Wordian to Capitanian palaeo-
temperatures from oxygen-isotopic composition of well-
preserved brachiopods, collected from the late Wordian upper
Omolon Formation (Y.D. Zakharov et al. 2005) and early
Capitanian lower Gizhiga Formation of the Gizhiga—Omolon
area, Northern Russian Far East (Fig. 1). Comparatively high
temperatures during the late Wordian (20.4°C, Fig. 4) and the
main trend for temperature drop in the early Capitanian (from 19
to 16.5°C) (Zakharov & Biakov 2008) were documented for this
high-latitude area, which seems to be in accordance with the
floristic data (Fig. 4) from the Roadian—Wordian Vladivostok
Formation, including late Wordian Marratiopsis orientalis
Beds, and latest Wordian—Capitanian Sitsa Formation (Kotlyar
et al. 1989) in South Primorye. However, the major part of
Capitanian marine faunas from the southern Russian Far East is
thermophilous (Kotlyar et al. 1997, 2006), in contrast with the
latest Wordian fauna from the Monodiexodina sutchanica—
Metadoliolina dutkevichi Zone.

Wuchiapingin to Changhsingian interval

Two maxima in palaeowater temperatures seem to occur during
the Late Permian, that is during the early Wuchiapingian (with
25.2-27.9°C calculated for middle palaeolatitudes of Transcau-
casia (Zakharov et al. 2001)), and the late Changhsingian
(present in both middle and high palaeolatitudes and
characterised by somewhat lower palaeotemperatures, 22—24.2
and 23.1°C, respectively (Y.D. Zakharov et al. 2005)), which is
in agreement with the data from thermophilous marine faunas
from South Primorye (Fig. 4). Very high palacotemperatures for
the Lopingian-aged Joulfa section in Iran (23-34°C) and the
Meishan section in South China (26—32°C) were similarly
obtained by Korte et al. (2005a). However, some of these data
seem to be in disagreement with Beauchamp and Baud’s (2002)
hypothesis, according to which the northwest margin of Pangaea
was under the influence of cold to very cold waters for nearly 30
m.y. in the post-Sakmarian Permian, the time of chert
accumulation in this area.

Permian—Triassic boundary (PTB) transition

Many hypotheses for processes to explain PTB events have
been offered, recently reviewed by Berner (2002), Kidder &
Worsley (2004), Richoz (2006) and Vajda & McLoughlin
(2007); a question that remains is the temperature impact.
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There is no information on isotopic palaco-seawater tempera-
tures for PTB beds (no well-preserved fossils, suitable for
oxygen-isotopic investigation, have been discovered within this
interval). However, information on the main trends in
temperature change has been obtained, using the Ca—-Mg
ratio method for carbonate sequences (Zakharov et al. 2001).
We interpret the lowest magnesium content in the uppermost
Permian carbonates of Transcaucasia as a short-term fall of
palaeo-seawater temperature at the very end of the Changh-
singian, following the thermal maximum of the late

Changhsingian Paratirolites kittli Zone, and particularly at the
beginning of the Induan (FAD Hindeodus parvus), just after a
significant negative carbon-isotope excursion (Baud et al. 1989;
Y.D. Zakharov et al. 2005). It is known that prominent negative
carbon-isotope excursions along with the Permo—Triassic one,
mentioned above (Baud et al. 1989; Magaritz 1989; Holser et al.
1991; Yin & Zhang 1996; Zakharov et al. 2001; Berner 2002),
were discovered in the Carboniferous—Permian (Magaritz
1989), Triassic—Jurassic (Guex et al. 2004; Kuerschner et al.
2007) and Jurassic—Cretaceous (Guex et al. 2004) boundary
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Fig. 7. Microphotograph of the shell structure in late Kungurian brachiopods from the Kapp Starostin Formation (Vgringen Member) in West
Spitsbergen: A. athyridid brachiopod, sample Sp2—1; fibres of the secondary layer (shell transect, slightly oblique section of the pedicle valve); the
arrow indicates an area with clear daily growth lines, showing their excellent preservation. B—D. Rhombospirifer? sp., sample Spl—-1 —
pseudopunctae-like structure of the secondary layer (shell transection, slightly oblique section of the brachial valve) and some diagenetically altered
parcels. Abbreviations: s.l., secondary layer; f, fibre of the secondary layer, ta, taleola (pseudopuncta), alt., siliceous parcel (combined with Al
(4100—10,100 mg/kg), Fe (2200 mg/kg), CI (15,700 mg/kg), Yb (700 mg/kg) and K (2100 mg/kg); location of some geochemical spectra (1-5)

indicated by crosses.

transitions, which, following Wignall & Twitchett (2002) and
Kidder & Worsley (2004), were mainly the result of volcanic
activity and related methane poisoning.

Another possible reason to explain the fact of the lowest
magnesium content in the uppermost Permian carbonates of
Transcaucasia seems to be a fundamental change in PTB
sedimentation, noted by Baud et al. (2007). However, Kozur
(2007) discovered a cool-water conodont fauna in the
Pleuronodoceras occidentale-Xenodiscus jubilaearis Zone of
Transcaucasia and Iran and volcanic microsphaerulites at this
level in Iran and the Germanic Basin. These palacontological
and volcanological patterns are consistent with our version.

Induan to Ladinian interval

According to our oxygen-isotope temperature determinations
(Zakharov et al. 1999a), late Olenekian and late Anisian climates
in Arctic Siberia seem to be about 7.4 and 6.6°C warmer,
respectively, than early Olenekian temperatures (Fig. 5).
The calculated middle to late Anisian isotopic palaeo-seawater
temperatures of about 15°C for Arctic Siberia (Kurushin &

Zakharov 1995; Zakharov et al. 1999a), approach those of the
late Olenekian (about 16.2°C; Zakharov et al. 1999a).

No oxygen-isotopic palacotemperature data have been
obtained for other levels of the Lower—Middle Triassic,
including the Ladinian. Furthermore, the temperatures estimated
now from oxygen isotopic analyses on Lower to Middle Triassic
biogenic carbonates on the whole are preliminary and restricted
only to the Boreal realm, and therefore it seems to be especially
difficult to use this information for global correlation.

Carnian to Rhaetian interval

There is no information on oxygen-isotopic composition of well-
preseved Carnian fossils. Recalculating Fabricius et al.’s (1970)
oxygen-isotopic data from late Norian invertebrate shells of the
northern Alps shows comparatively low palaeotemperatures:
15.9-16.8°C from cephalopods Arcestes and Nautilidae, and
12.3°C from the bivalve Halobia (Fig. 6). The revised oxygen-
isotopic palaeotemperatures for aragonitic shells here, and
below, were obtained by us using the method proposed by
Grossman & Ku (1986); for calcitic shells, as was mentioned
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Fig. 8. Geochemical profiles from shell of Rhombospirifer? sp., sample
Spl-1. Location of the spectra 1-5 are shown in Fig. 7D. The asterisk
near Au indicates that this Au value should not be taken into account
because the surface of the sample was covered by gold before
scanning. Figure 7C, D cross-sections of pseudopunctae-like structure
of secondary layer. Designations as in Figs. 3—6.

above, we used the form proposed by Anderson & Arthur
(1983). Data on comparatively low late Norian palaeotempera-
tures are in good agreement with evidence from South Primorye
concerning latitudinal reduction of the tropical-subtropical
climatic zone during the late Norian. Somewhat higher credible
palaeotemperatures for the Alps were recalculated from data on
the late Rhaetian brachiopods (14.9—18.2°C, Fabricius et al.
1970) and some well-preserved belemnites (16.6—22.9°C;

GFF 131 (2009)

Kaltenegger 1967), which is in accordance with the palaeofloral
records from Triassic—Jurassic boundary strata in Greenland
(Hesselbo et al. 2003a).

Hettangian to Sinemurian interval
The Jurassic is generally characterised as a period with
greenhouse conditions (Vajda & Wigforss-Lange 2009,
Mehlqgvist et al. 2009, this volume). Again, using Fabricius
et al.”s (1970) oxygen-isotopic data from Hettangian belemnites
of the Alps we can see comparatively high-recalculated
palacotemperatures (> 18.6—20.4°C), similar to those obtained
for the late Rhaetian (Kaltenegger 1967) in this area (Fig. 6).
Contradictory isotopic information has been obtained for
Sinemurian palaeotemperatures. High palaeotemperatures came
from ammonoids in Europe: those from the lower Sinemurian
show palaeotemperatures of 26.9°C and those from the upper
Sinemurian 26.4°C (Fritz 1965; Zakharov et al. 2006b).
However, recalculated palaeotemperatures, obtained from a
Sinemurian brachiopod (15.1°C) and belemnites (13.1-17.4°C)
from the Alps are significantly lower, showing possible cooling
in some parts of the Sinemurian (Fabricius et al. 1970).
Palacotemperature data, obtained from Sinemurian ammonoid
(Zakharov et al. 2006b), brachiopod and belemnite (Fabricius
et al. 1970) faunas from FEurope are consistent with
palaeobotanical and palaeozoological evidence from South
Primorye, showing the expansion of the tropical-subtropical
climatic zone during the Hettangian to early Sinemurian. Short-
term cooling, recognised from palaeontological data for the very
end of the Sinemurian in South Primorye has not yet been
confirmed by oxygen-isotopic data (because of a lack of
information on this topic).

Pliensbachian to Toarcian interval

Our recent isotopic data from Liassic ammonoids of Europe
(Zakharov et al. 2006b) show a drop in temperature from the
early Pliensbachian (23.1-24.2°C) to the late Pliensbachian
(20.7°C), using aragonitic ammonoid shells from England and
Germany, respectively (Zakharov et al. 2006b). Similar
evidence has been obtained earlier from European belemnites:
15-27°C for the early Pliensbachian (Fritz 1965; Fabricius et al.
1970; Rosales et al. 2004) and 10-22°C for the late
Pliensbachian (Fabricius et al. 1970; Rosales et al. 2004).
A distinct Toarcian climatic optimum (20-28.8°C) has been
recorded on the basis of isotopic data from Western Europe
(Pearson 1978; Rosales et al. 2004) (Fig. 9). Palaeozoological
records on latitudinal reduction of the tropical—subtropical
climatic zone in the Russian Far East in the late Pliensbachian,
when mixed Tethyan-Boreal ammonoid assemblages occurred
in South Primorye, and subsequent latitudinal expansion at least
during the late Toarcian, when abundant subtropical trigoniids
appeared there are in accordance with the isotopic palaeotem-
perature estimations given above.

Aalenian to Bathonian interval

Late Bajocian—the earliest Bathonian palaeotemperatures are
comparatively low for middle latitudes of western Europe
(13.2-23.0°C), Greenland (19.1-20.3°C) and high-latitude
Alaska (15.9°C) (Teiss & Naidin 1973). Higher palaeotempera-
tures for the Bajocian were calculated only for South America
(19.7-28.6°C, Teiss & Naidin 1973).
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A general temperature drop in middle latitudes during at least
the second portion of the Bajocian (comparing with the
Toarcian) partly coincides with a reduction of the tropical-
subtropical climatic zone in the Russian Far East. This trend is
based on the existing climatic conditions intermediate between
warm-temperate and subtropical ones in South Primorye (Fig. 9),
using palaeobotanical data (Volynets 2008) and the distribution
of Boreal inoceramid bivalves, when associated only with rare
thermophilous trigoniid bivalves, in the Aalenian—Bajocian
Bonivur Creek Formation (Sey & Kalacheva 1980, 1981).
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Callovian to Kimmeridgian interval

The highest Jurassic isotopic palacotemperature (29.4°C),
obtained by us came from aragonitic ammonoid Kossmoceras
sp. shells, discovered in the lower middle Callovian of England
(Zakharov et al. 2006b, Table 4). Other Callovian to
Kimmeridgian fossils from middle latitudes show the following
significant palaeotemperature fluctuation (Fig. 10): (1) 14.5—
20.8°C (belemnites; lower Callovian, Poland and Pechera River
Basin in Russia; Teiss et al. 1968); (2) 11.9°C (palaeotempera-
ture calculated by us from a belemnite rostrum; middle lower
Callovian Black Clay, Kineshma area, Volga River, at 1 kmN
from Novoloki Village; Zakharov et al. 2006b, Table 4); (3)
13.3-20.7°C (palacotemperatures calculated by us from the
ammonoid Cadoceras elathmae Nikitin and Cadoceras sp.
shells; middle lower Callovian Black Clay, Kineshma area,
Volga River, at 1 km N from Novoloki Village; Zakharov et al.
2006b, Table 4); (4) 9.8—16.7°C (palaeotemperatures calculated
by us from brachiopod shells; middle lower Callovian Black
Clay, Kineshma area, Volga River, at 1kmN from Novoloki
Village; Zakharov et al. 2006b; Table 4); (5) 10.3-18.4°C
(belemnites; middle Callovian, Russian Platform, Urals and
Kazakhstan (Teiss et al. 1968; Podlaha et al. 1998); (6) 10.8—
19.4°C (belemnites; upper Callovian, Poland, Russian Platform;
Teiss et al. 1968; Longinelli et al. 2003); (7) 9.8-14.1°C
(bivalves; upper Callovian, Russian Platform; Zakharov et al.
2006b); (8) 17.2-21.0°C (Quenstedttoceras sp. and Kossmo-
ceras aculcatum Michailow; upper Callovian, Poland and
Russian Platform; Zakharov et al. 2006b; Table 4); (9) 16—-28°C
(Oxfordian, England and Madagascar, Anderson et al. 1994;
Lécuyer & Bucher 2006) (Fig. 10); (10) 11-13°C (belemnites;
early Oxfordian, (lower Oxfordian, Polish); Longinelli et al.
2003); (11) 15.8—16.9°C (bivalves; lower Oxfordian, England;
Anderson et al. 1994); (12) 13.5-26.7°C (belemnites; middle
Oxfordian, England; Longinelli et al. 2003); (13) 12°C
(belemnites; upper Oxfordian, England; Longinelli et al.
2003); (14) 16-17°C (belemnites; lower Kimmeridgian,
Germany; Bowen 1961) and (15) 12-20°C (belemnites; upper
Kimmeridgian, Greenland; Bowen 1969; Price & Sellwood
1994). It is important to note that palacotemperatures calculated
from some Callovian belemnites of the Russian Platform, as well
as some Albian belemnites of North France, are lower than those
from ammonite shells, found in the same calcareous nodule
(Zakharov et al. 2006b). This evidence suggests that belemnites
engaged in significant short-term vertical migrations in the water
column, reaching colder upper bathyal waters.

Kimmeridgian high-latitude palaeotemperatures, calculated
from belemnites and brachiopods collected in the Falkland
Islands (Price & Sellwood 1994), New Zealand, Antarctica
(Ditchfield et al. 1994; Podlaha et al. 1998), and the subpolar Urals
(Teiss et al. 1968; Grocke et al. 2003; V.A. Zakharov et al. 2005)
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Fig. 9. Correlation of upper Liassic to Middle Jurassic of the southern Russian Far East with the available oxygen and carbon-isotope data. Positive
carbon-isotopic anomalies: 30, middle Pliensbachian (Hesselbo et al. 2000; Jenkyns et al. 2002); 31, middle Toarcian (Ignatiev et al. 1982; Jenkyns
etal. 2002); 32, early Aalenian (Jenkyns et al. 2002; Hesselbo et al. 2003b); 33, early late Aalenian (O’Dogherty et al. 2006); 34, earliest Bajocian
(Ditchfield 1997); 35-38, Bajocian (Jenkyns et al. 2002; Hesselbo et al. 2003b; O’Dogherty et al. 2006). Additional designations as in Figs. 3—6.
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Fig. 10. Correlation of Upper Jurassic to Lower
Cretaceous (Berriasian) of the southern Russian Far
East using available oxygen- and carbon-isotope data.
Positive carbon-isotopic anomalies: 39, early Callovian
(Jenkyns et al. 2002; O’Dogherty et al. 2006); 40, late
Callovian (Barskov & Kiyashko 2000); 41, late
Oxfordian (Anderson et al. 1994); 42, early Tithonian
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vary between 10.1 and 23.3°C. The most negative 8 '%0 value
representing the most elevated ‘temperature’ (abnormal tempera-
ture, 25°C) recorded in the lowermost Kimmeridgian of the
Falkland area, was considered by Sellwood et al. (2000) and
Grocke et al. (2003) to indicate fresh-water input resulting from a
reduction in ice and/or snow-sheet and associated increased runoff.

A solitary piece of climatic evidence found in the Callovian—
Kimmeridgian interval in South Primorye seems to be the
discovery of the Callovian cycadean frond Pseudocycas sp.,
reflecting humid subtropical conditions or neighbouring
subtropical areas. Therefore, we correlate the Callovian
Pseudocycas Beds of South Primorye with the thermal lower
middle Callovian maximum, determined on the basis of the
oxygen-isotope data (Zakharov et al. 2006b).

Tithonian to Berriasian interval

Isotopic palacotemperature data for the latest Jurassic (Tithonian)
are incomplete and contradictory, but evidence from the Berriasian
seem to be more complete (Fig. 10). Data on marine bivalves and

ammonoids from South Primorye are in accordance with the
oxygen-isotope evidence, according to which expansion of
the tropical-subtropical climatic zone took place apparently in
the early Tithonian (Berlin et al. 1967; Teiss et al. 1968; Price &
Sellwood 1994; Tremolada et al. 2006) and early to middle
Berriasian (Teiss et al. 1968; Ditchfield et al. 1994; Price &
Mutterlose 2004) with a reduction in the late Tithonian (Tremolada
et al. 2006; Zakharov et al. 2006b) and at the very end of the
Berriasian (Ditchfield 1997; Price et al. 2000).

During the latest Jurassic palacotemperature in middle latitudes
dropped from about 27°C in the early Tithonian to 15.3°C in the
late Tithonian, following warmer conditions (29.9°C) in
Berriasian time (Fig. 10). The Tithonian to early Berriasian
mollusc succession in South Primorye and the adjacent eastern
Heilongjiang Province area, northeast China, provides evidence
of the next stages: (1) early—middle Tithonian (mixed Boreal-
Tethyan bivalve assemlage, represented by Boreal Buchia in
Primorye and Heilongjiang and Tethyan Jotrigonia in Primorye;
Tethyan and cosmopolitan ammonoids, Semiformiceras,
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Pseudolissoceras, Haploceras, Pseudosubplanites and Dalmasi-
ceras in Primorye; Sey & Kalacheva 1980, 1981; Konovalova &
Markevich 2004; Sha 2007); (2) latest Tithonian (Boreal Buchia
assemblage with no thermophilous trigoniid bivalve elements in
Primorye and Heilongjiang; Konovalova & Markevich 2004; Sha
2007); (3) earliest Berriasian (Tethyan and possibly mixed
Boreal-Tethyan mollusc assemlages; in this stage of our
knowledge of the earliest Berriasian Tethyan ammonoids,
Pseudosubplanites and Dalmasiceras and cosmopolitan ammo-
noids has only been discovered in the South Primorye region,
whereas the earliest Berriasian Buchia wvolgenis-B. cf. sub-
okensis-B. cf. okensis-B. unschensis assemblage is now known
only in Heilongjiang, with no latest Jurassic ammonoids found in
notheastern China because of the facies conditions; Zakharov
et al. 1996; Sey & Kalacheva 1999; Sha 2007).

Succession of carbon-isotope events

Additional important information on Early—Middle Triassic
marine environments can be obtained from data from positive
carbon-isotopic anomalies. As su§gested by Alcala-Herrara et al.
(1992), some variations in & ">C/!°C ratios recorded in deep-water
marine organic carbonates might be controlled by such environ-
mental factors as the carbon budget, upwelling and primary
productivity. It is difficult to separate the effect of each of these
factors in deep-water conditions, but when worldwide carbon
isotope shifts are observed in shallow-water carbonates, they are
generally attributed to a change in primary biological productivity,
first of all, as noted above, of phytoplankton. Phytoplankton is one
of the main groups of organisms that utilise solar energy on the
surface of the ocean and their main biomass is contained in an
upper 100 m water mass, related to photosynthesis, but their
location within the zone depends first of all on a degree of
hydrological intermixing of water under the influence of thermal
gradients and winds (Bogorov 1974). Phytoplankton productivity
is greatin areas characterised by an intensive vertical circulation, as
in upwellings. The small amount of plankton in the Recent Arctic
and Antarctic seems to be connected with the short vegetal period
of phytoplankton at high latitudes. However, during times when
polar ice was absent, the related hydrological conditions were
probably considerably different from those of the present day, in
that poleward transport of large equatorial warm-water masses and
weaker vertical circulation of waters probably occurred in some
climatic zones. Therefore, the actual method for investigation of
Phanerzoic carbon-isotopic anomalies can be applied only with
considerable care.

Much published material contains information on the carbon-
isotope anomalies of the Late Carboniferous to Early Cretaceous
interval (Baud et al. 1989; Holser et al. 1989; 1991; Magaritz
1989; Mii et al. 1997; Musashi et al. 2001; Zakharov et al. 2001;
Berner 2002; Hesselbo et al. 2003a, 2003b; Longinelli et al.
2003; Guex et al. 2004; Krull et al. 2004; Payne et al. 2004,
Rosales et al. 2004; V.A. Zakharov et al. 2005; O’Dogherty et al.
2006; Richoz 2006; Tremolada et al. 2006; Zakharov et al.
2006a; Galfetti et al. 2007; Horacek et al. 2007; Kuerschner et al.
2007; Payne & Kump 2007; Riccardi et al. 2007; Price & Page
2008). As was shown above, the most frequent Permian—
Triassic positive carbon-isotopic anomalies occurred during the
late Kungurian (Fig. 3) and late Wordian—early Changhsingian
(Fig. 4), and somewhat less from the Induan into the earliest
Anisian (Fig. 5). We suggest that a similar picture is apparent
also for the late Aalenian—Bajocian time interval (Fig. 9).

GFF 131 (2009)

However, positive carbon-isotopic anomalies seem not to be so
frequent during the Hettangian—early Aalenian (Figs. 6 and 9)
and Bathonian—early Berriasian (Figs. 9 and 10) times.
Frequent positive carbon-isotopic anomalies of the latest
Cisuralian (late Kungurian), Guadalupian, early Lopingian and
early Middle Jurassic (late Aalenian to Bajocian) might have
been biased by the very unstable biological productivity of the
seas of that time, caused, apparently by repeated strong
hydrological intermixing of oceanic waters under influence of
considerable thermal gradients. Hydrological conditions in the
latest Cisuralian (late Kungurian), Guadalupian and early
Lopingian time probably differed considerably from most parts
of the Cisuralian, late Lopingian, Middle and Late Triassic
(somewhat less from the Induan into the earliest Anisian), Early
Jurassic, late Middle and Late Jurassic and early Early
Cretaceous ones (apparently mainly in a less stratified ocean).

Conclusions

1. Characteristics of Permian to the earliest Cretaceous
macrofaunas from the BJKH and SR indicate that they
inhabited a single marine basin (Ussiri—Lesser Hingan),
located between middle and high latitudes in conditions of
significant climatic change. Data obtained agree with the
palaeobotanical results from this area, which show that the
Permian to the earliest Cretaceous palaeoclimates in these
terranes ranged mainly from warm-temperate to intermediate
between warm-temperate and subtropical.

2. Judging from isotopic palacotemperature data, various regional
warmings seem to have followed the Permo—Carboniferous
glaciation during later Permian to the earliest Cretaceous in the
eastern Asian continental margin and these were most likely
connected with the main global climatic changes, resulting in
frequent expansions and reductions of the warm-temperate
climatic zone of the Northern hemisphere.

3. The most frequent Permian to the earliest Cretaceous positive
carbon-isotopic anomalies have been discovered within the
intervals of the upper Kungurian, Capitanian, lower
Changhsingian and upper Aalenian—Bajocian. Taking into
account the known data on phytoplankton distribution in the
present-day oceans, the location of which depends on a
degree of hydrological intermixing of water, the post—
Sakmarian conditions might have been related to global
environmental changes biased by unstable hydrological
conditions, which reached their zenith during the above-
mentioned time intervals (in contrast to the Artiskian,
Roadian, late Changhsingian to Toarcian and Bathonian to
Berriasian times, when more or less stratified oceans seem to
have been more common).
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