

Cretanallachiidae – a new family of the specialized Cretaceous Neuroptera

Vladimir N. Makarkin

Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, 690022, Russia

ARTICLE INFO

Article history:

Received 18 October 2025

Received in revised form

27 December 2025

Accepted in revised form 13 January 2026

Available online 21 January 2026

Keywords:

Neuroptera

Cretanallachiidae

New family

Cretaceous

Kachin amber

ABSTRACT

The subfamily Cretanallachiinae is elevated to a family level, Cretanallachiidae, stat. nov. Its autapomorphies are bipectinate antennae in males and a long ventro-caudal extension of the 9th tergite in females. The family is known only from mid-Cretaceous Kachin amber. It is likely closely related to Dilaridae, an undescribed ithonoid-like taxon from the Middle Jurassic, and to a lesser extent Ithonidae. They lived in humid tropical forests with diverse angiosperms and probably fed on their flowers (nectar and/or pollen) using relatively long sucking mouthparts.

© 2026 Elsevier Ltd. All rights are reserved, including those for text and data mining, AI training, and similar technologies.

1. Introduction

The order Neuroptera has been known since the Lower Permian, but it reached its peak diversity in the second half of the Mesozoic. Most extant families had appeared by this time, and 16 valid families restricted to the Mesozoic are recognized by most authors: Archoesmyliidae, Osmylopsychopidae, Kalligrammatidae, Aetheogrammatidae, Parakseneuridae, Prohemerobiidae, Sau-crosmyliidae, Panfiloviidae, Grammolungiidae, Mesochrysopidae, Ascalochrysidae, Palaeoleontidae, Babinskaiidae, Araripeneuridae, Cratosmyliidae and Dipteronotispidae (Ren and Makarkin, 2009; Yang et al., 2012; Makarkin et al., 2013, 2018; Lu et al., 2022).

Mid-Cretaceous Kachin amber contains numerous Neuroptera, some of which are amazing, quite unlike modern taxa (Lu and Liu, 2021). There are three taxonomic groups with long sucking mouthparts. Most are assigned to the Paradoxosyrrinae (presumed Sisyridae: Makarkin, 2016; Khrarov et al., 2019) and Cretanallachiinae, and one species belongs to the Kalligrammatidae (Z. Peng et al., 2024b).

The taxonomic placement of the subfamily Cretanallachiinae is controversial. It includes eleven species in six genera known only from Kachin amber (Huang et al., 2015; Lu et al., 2016a, b; Makarkin, 2017; Chang et al., 2018; Q. Liu et al., 2018; Z. Peng et al., 2024a, b). The first described genus of the group

(*Cretanallachius* Huang et al., 2015) was assigned to Nallachiinae, an extant subfamily of Dilaridae (Huang et al., 2015). The second (*Burmopsychops* Lu et al., 2016b) was attributed to an unclear family of Psychopsoidea (Lu et al., 2016a, b). Makarkin (2017) later established the new subfamily Cretanallachiinae in Dilaridae for these two genera. Chang et al. (2018) described the genus *Oligopsychopsis* Chang et al., 2018 and again considered Cretanallachiinae as belonging to an unclear family of Psychopsoidea. Liu et al. (2018) described two genera *Burmogramma* Liu et al. 2018 and *Cretogramma* Liu et al. 2018, and assigned this group to Kalligrammatidae as “a relatively advanced lineage within the family” (Liu et al., 2018, p. 9). Lastly, two new species of *Burmopsychops* (Z. Peng et al., 2024a), and the monotypic genus *Lasiorgramma* Z. Peng, Shi, Ren & Yang in Z. Peng et al. (2024b) have been described as belonging to Kalligrammatidae.

Therefore, Cretanallachiinae is currently thought to either belong to the Dilaridae or the Psychopsoidea, specifically the Kalligrammatidae. Here, I dispute a kalligrammatid (and generally psychopsoid) affinity of Cretanallachiinae and argue that this group is a family of its own, most probably closely related to Dilaridae or ithonoid-like taxa.

2. Material and methods

All Cretanallachiidae specimens (including those examined, mainly from high-resolution photographs) come from Kachin amber in northern Myanmar, estimated to be lowest Cenomanian

E-mail address: vnmakarkin@mail.ru.

(Shi et al., 2012; Smith and Ross, 2018) from the Hukawng Valley, the state of Kachin (see map in Makarkin and Staniczek, 2026, fig. 1).

Venational terminology follows Breitkreuz et al. (2017) except for details (e.g., spaces, veinlets) that follow Oswald (1993). Crossveins are designated by the longitudinal veins to which they connect and are numbered in sequence from the wing base, e.g., 1r-m, first (basal) crossvein between R/RP and M/MA.

Venational abbreviations: A1–A3, first to third anal veins; C, costa; CuA, anterior cubitus; CuP, posterior cubitus; dn, distal nygma; hv, humeral veinlet; MA and MP, anterior and posterior branches of the media; RA, anterior radius; RP, posterior radius; RP1, most proximal branch of RP; Sc, subcosta.

Institutional abbreviations: CNU, College of Life Sciences, Capital Normal University, Beijing, China; SMNS, State Museum of Natural History Stuttgart, Germany.

This work has been registered in Zoobank: urn:lsid:zoobank.org:pub:D8384529-7DC5-4100-9D40-41CC7019A5AE.

3. Systematic palaeontology

Order Neuroptera Linnaeus, 1758.

Family Cretanallachiidae Makarkin, 2017, stat. nov.

Cretanallachiinae Makarkin, 2017: 13 [as a subfamily of Dilaridae]; Cretanallachiinae: Q. Liu et al., 2018: 2 [as a subfamily of Kalligrammatidae].

Type genus. *Cretanallachius* (by original designation).

Diagnosis. Small to medium-sized Neuroptera (forewings 6.5–32 mm long). Most antennal flagellomeres of male bipectinate except terminal (Fig. 1); flagellomeres of female moniliform or filiform, long (more than twice as long as wide). Mouthparts sucking with long galeae and ligulae; mandible and ligula completely reduced (Fig. 2). Both wings: distal nygma sometimes present; costal space broadened, mostly medially; subcostal crossveins numerous; Sc and RA widely separated distally; crossveins in radial space usually numerous, irregularly arranged with indistinctly formed outer gradate series; MP often with several anteriorly-directed pectinate branches. Forewing: humeral veinlet simple, straight; one to three basal branches of RP originating separately on RA in most genera; CuA simple or with few branches; CuP pectinately forked, often only distally. Hind wing: basal crossvein between R and M (if present) long, sinuous; CuA usually pectinately forked; CuP origins far from wing base, simple or at most bifurcated in most genera. Male (Fig. 3): 9th tergite divided dorsally, with caudally extending lobes bearing a row of short, strong setae; 9th sternite often with a long caudal projection. Female: 9th tergite divided dorsally, representing a paired structure with a long broad ventro-caudal extension; gonocoxites 9 broad, widely separated; gonostyli 9 well developed.

Genera included. Six genera from the mid-Cretaceous Kachin amber: *Cretanallachius* (monotypic), *Burmopsychops* (four species), *Burmogramma* (monotypic), *Cretogramma* (monotypic), *Lasiogamma* (monotypic), and *Oligopsychopsis* (three species).

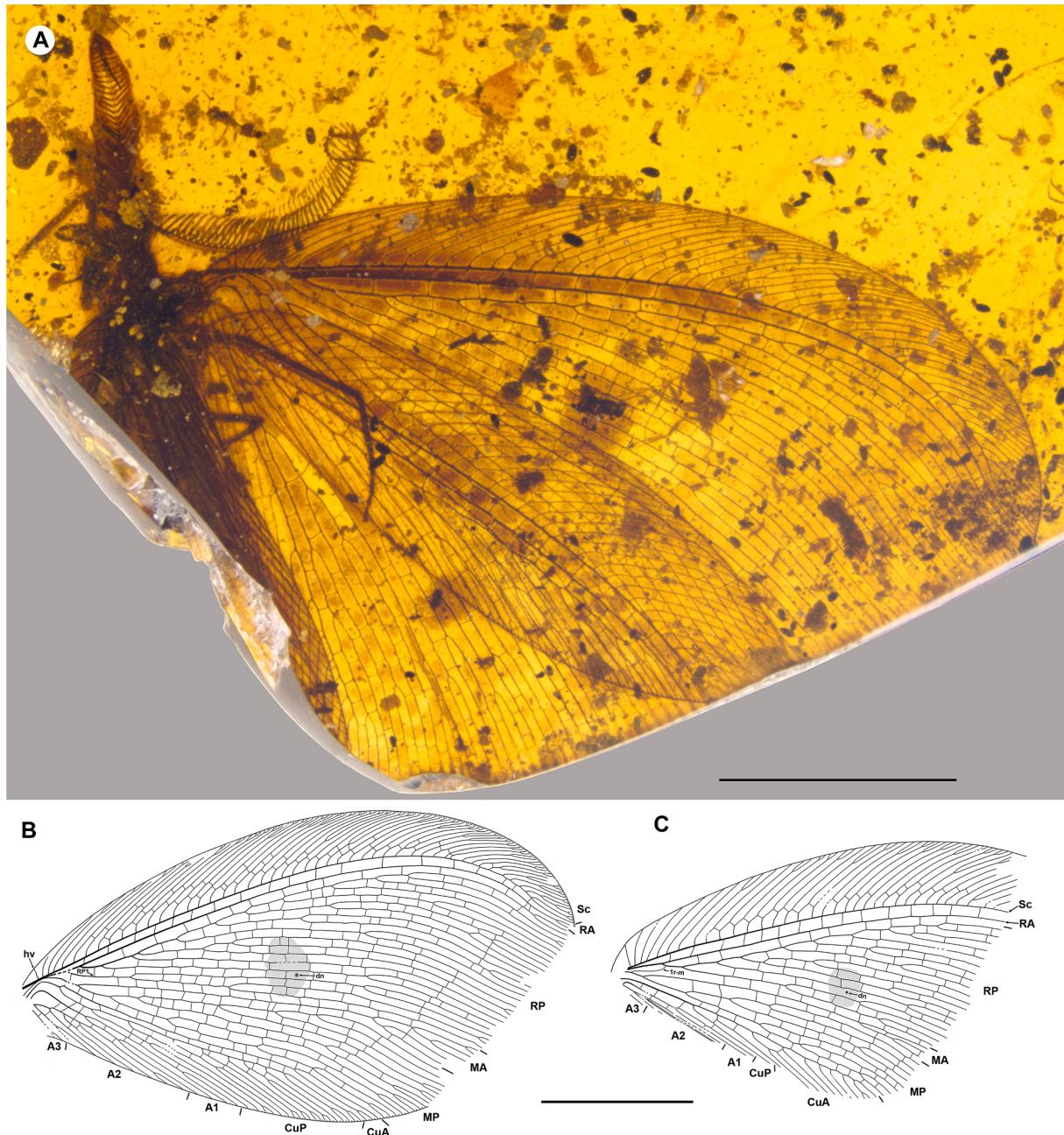
4. Discussion

4.1. Diagnostic characters of Cretanallachiidae

4.1.1. Mouthparts

Cretanallachiidae are characterized by siphonate (sucking) mouthparts. The proboscis consists of eight long elements. Two

pairs are with certainty maxillary and labial palps covered with long setae. Two other pairs are slender structures lacking long setae, and their interpretation is ambiguous. One pair is interpreted as galea (Makarkin, 2017; Khramov et al., 2020) or the fused galea and laciniae (e.g., Lu et al., 2016a; Chang et al., 2018; Q. Liu et al., 2018). The latter interpretation is followed by those authors, who interpret another pair as the ligula. Makarkin (2017) considered the latter pair in *Oligopsychopsis groehni* (Makarkin, 2017) as laciniae, with the ligula completely reduced. This interpretation was based on the position of the prementum in front of the labium. This interpretation has been disputed by Q. Liu and coauthors based on their observation that in all specimens of *O. groehni* that they examined “the prementum is actually absent and the “prementum” illustrated in Makarkin (2017) is probably artificial” (Q. Liu et al., 2018, S1, p. 2). However, this appears to be untrue: first, the prementum is clearly discernible in *O. groehni* (see Makarkin, 2017, fig. 7A), and second, in other species of the genus (*Oligopsychopsis penniformis* Chang et al., 2018) and *Lasiogamma ooideum* Z. Peng, Shi, Ren et Yang in Z. Peng et al., 2024b the prementum is also well developed (Fig. 2C; Chang et al., 2018, fig. 4E). Unfortunately, photographs of the mouthparts in Lu et al. (2016a), Chang et al. (2018) and Q. Liu et al. (2018) are of poor quality and do not allow details to be discerned. Their interpretations are unreliable as their drawings are reconstructions with a large element of bias (see e.g., Lu et al., 2016a, fig. 4e; Chang et al., 2018, fig. 4e). For example, the reconstruction of the mouthparts of *O. groehni* shows two ‘ligulae’ being entirely separated and located in front of two galeae, not behind (Q. Liu et al., 2018, fig. 2i). A paired ligula is unknown in Neuroptera, but it can be reduced: entirely reduced to absence in Dilaridae (Shepard, 1967, fig. 45; Zimmermann et al., 2019, fig. 11.10c), and strongly reduced in some Ithonidae (e.g., Tillyard, 1919, fig. 6d; Shepard, 1967, fig. 13).


Lasiogamma ooideum Z. Peng, Shi, Ren et Yang in Z. Peng et al., 2024b was recently described, in which the proboscis consists of four thin adjacent elements, and the palps are widely spaced (Figs. 2B, C; Z. Peng et al., 2024b, fig. 2C). These elements evidently originate from the maxillae and are undoubtedly the galeae and laciniae. In other known specimens, all elements of the proboscis are widely spaced and do not form a sucking tube, which indicates that they do not have a special connecting (coupling) mechanism.

Thus, the proboscis of Cretanallachiidae consists of two pairs of palps and probably galeae and laciniae; their ligula is completely reduced (until proven otherwise).

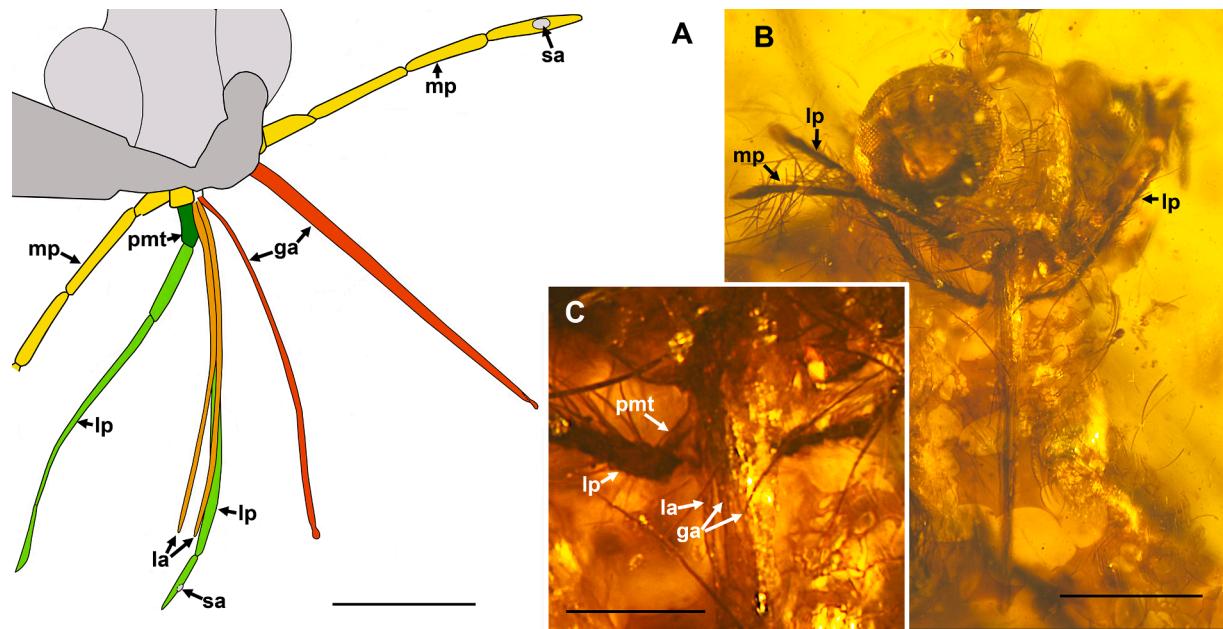
The terminal segments of the maxillary and labial palps possess a macula, which Lu et al. (2016a, fig. 4d) called an “ovoid sensory area”. It is unclear yet if these sensory areas in Cretanallachiidae and the palpimacula (see Crampton, 1921) of some extant Neuroptera (e.g., Hemerobiidae, Osmylidae, Mantispidae, Psychopsidae, Myrmeleontoidea) are homologous. The sensory areas of Cretanallachiidae are often not mentioned in descriptions, so information about them is incomplete.

Sucking mouthparts are detected in few fossil Neuroptera taxa, i.e., Aetheogrammatidae, Kalligrammatidae, Cretanallachiidae, Paradoxosyrrinae, the latter three in Kachin amber.

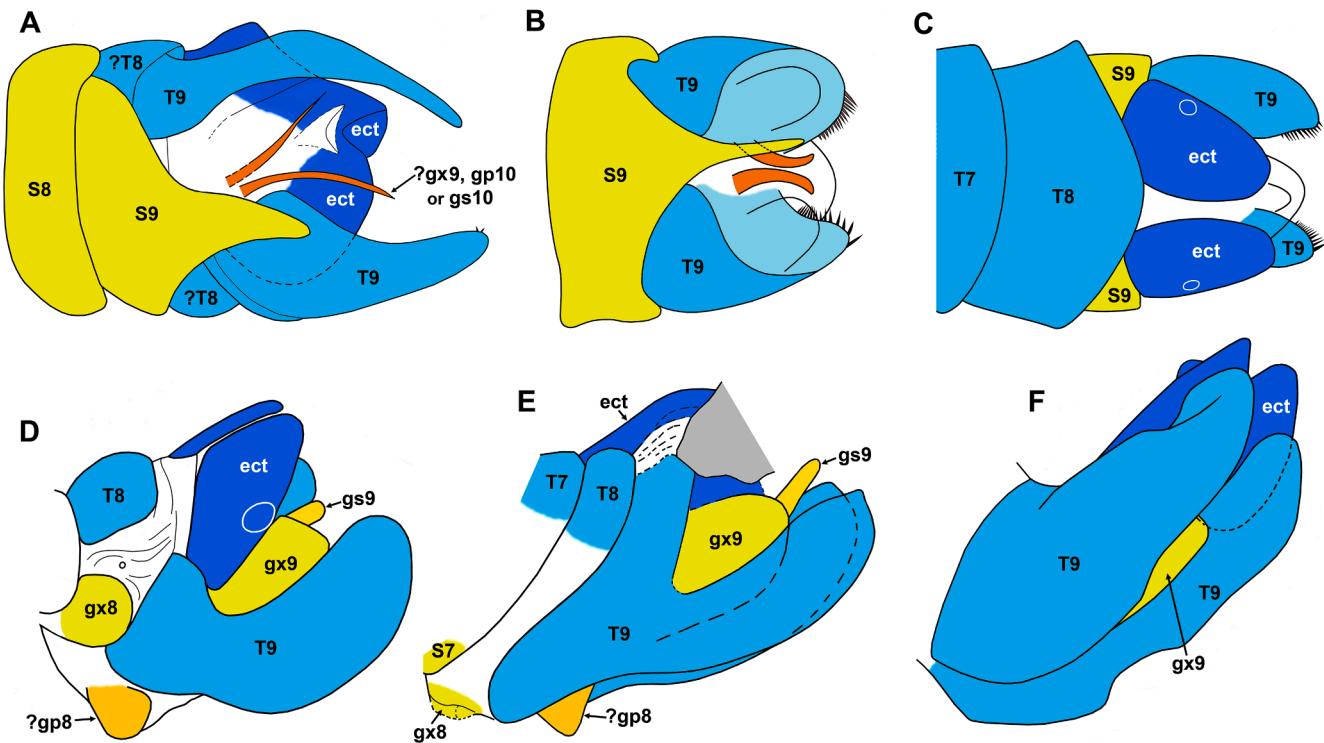
In Kalligrammatidae, the sucking mouthparts are known in Kalligrammatinae, Kallihemerobiinae, *Meioneurites spectabilis* Engel, 2005 and *Ithigamma multinervium* Yang et al., 2014; the mouthparts of Sophogrammatinae are chewing (mandibulate), and their structure is unknown in the basal Liassopsychopinae and *Protokalligamma* Yang et al., 2011; Makarkin and Ansorge, 2025. The proboscis of Kalligrammatinae and Kallihemerobiinae appears similarly constructed (see Labandeira et al., 2016, fig. S1). A maximum of six elements is visible: two pairs of elongate palps, and a pair of stylet-like elements, which usually treated as the

Fig. 1. *Oligopsychopsis grandis* Q. Liu et al., 2018, specimen SMNS BU-193. A, specimen as preserved (photo: H. Staniczek); B, forewing venation; C, hind wing venation. Scale bar is 5 mm (B, C, to same scale).

galeae (Labandeira, 2010, fig. 8B; Labandeira et al., 2016, fig. S1; Khramov et al., 2020, fig. 8.6), rarely as the ligula (Q. Liu et al., 2018, fig. S10c, d). Elements of the proboscis are usually conjoined to form a tube. As a result, its structure is often impossible to examine in detail.


The sucking mouthparts of Aetheogrammatidae are poorly known, but they appear generally similar to those of Kalligrammatinae (Khramov et al., 2020).

The sucking mouthparts of Paradoxosisyrrinae are generally similar to those of Cretanallachiidae, in which all elements of the proboscis are also widely spaced. But in addition to the eight elements, as in the Cretanallachiidae (i.e., two pairs of palps, a pair of galea and a pair of laciniae), there is a well-developed unpaired ligula, and the labrum is sometimes elongated (Makarkin, 2016, fig. 6A; Khramov et al., 2020, fig. 8.6).


The sucking mouthparts of three Neuroptera groups (Kalligrammatidae + Aetheogrammatidae, Cretanallachiidae and Paradoxosisyrrinae) most probably evolved independently.

4.1.2. Antennae

Pectinate antennae occur in Neuroptera only in male Cretanallachiidae and most Dilaridae. These are unipectinate in Dilaridae and bipectinate in Cretanallachiidae. However, the male antennae of the extant dilarid genus *Berothella* Banks, 1934 from south-eastern Asia are not pectinate (X. Liu et al., 2017). Makarkin (2016) considered the presence of pectinate antennae in males to be an autapomorphy of Dilaridae (including Cretanallachiinae), whereas Chang et al. (2018) and Q. Liu et al. (2018) believed that they evolved independently in these groups (i.e., Dilaridae and Cretanallachiidae).

Fig. 2. Mouthparts of Cretanallachiidae. A, *Oligopsychopsis groehni* (Makarkin, 2017) (based on Makarkin, 2017, fig. 6B); B, *Lasiogramma ooideum* Peng, Shi, Ren and Yang in Z. Peng et al., 2024b, frontal view (photo: Z.H. Peng); C, same, enlarged portion of basal parts. ga, galea; la, lacinia; lp, labial palps; mp, maxillary palps; mpt, prementum; sa, sensory area. Scale bars are 0.5 mm (A, B), 0.2 mm (C).

Fig. 3. Genital segments of Cretanallachiidae. A, male of *Cretanallachius magnificus* Huang et al., 2015, ventral view (based on Lu et al., 2016a, fig. 2b); B, male of *Burmopsychops shihi* Peng, Shi, Ren and Yang in Z. Peng et al., 2024, ventral view; C, same, dorsal view (based on Peng et al., 2024; fig. 3E, G); D, female of *Burmopsychops limoae* Lu et al., 2016b, lateral view (based on Q. Liu et al., 2018, fig. S2d); E, female of *Oligopsychopsis groehni* (Makarkin, 2017), lateral view (based on Makarkin, 2017, fig. 8B); F, female of *Burmogramma liui* Q. Liu et al., 2018, lateral view (Q. Liu et al., 2018, fig. S1i). ect, ectoproct; gp8, gonopophyses 8; gx8, gonocoxites 8; gs9, gonostyli 9; gx9, gonocoxites 9; S7 to S9, 7th to 9th sternites; T7 to T9, 7th to 9th tergites. All to not scale.

4.1.3. Male genitalia

The male genitalia of Cretanallachiidae are known in most genera (seven species, different in preservation): *Cretanallachius*

magnificus Huang et al., 2015, *Burmopsychops labandeirai* Q. Liu et al., 2018, *B. shihi* Peng, Shi, Ren et Yang in Z. Peng et al. (2024a), *Cretogramma engeli* Q. Liu et al., 2018, *Oligopsychopsis grandis* Q. Liu

et al., 2018, *O. penniformis*, *Lasiogramma ooideum* Peng, Shi, Ren et Yang in Z. Peng et al., 2024b (Huang et al., 2015, fig. 4c; Lu et al., 2016a, fig. 2d; Chang et al., 2018, fig. 5D; Q. Liu et al., 2018, figs. S3f,g; S4b,c; S6g; S8h; Z. Peng et al., 2024a, figs. 3D–G; Z. Peng et al., 2024b, fig. 4).

The most controversial part of the genitalia is a pair of large extended structures bearing a row of short strong setae ('teeth'). Superficially, these resemble the ectoproct of some Hemerobiidae (e.g., Oswald, 1993a, fig. 54), Psychopsidae (e.g., Oswald, 1993b, figs. 1, 6, 12, 17) and Ithonidae (e.g., Riek, 1974, figs. 4, 8, 39) or the 9th tergite of Dilaridae (see e.g., Zhang et al., 2016, figs. 11, 13). These genital segments are usually interpreted as gonocoxites 9 (Lu et al., 2016a, fig. 2d; Chang et al., 2018, fig. 5D; Q. Liu et al., 2018, figs. S3f, g; S4b, c), but the best preserved genitalia in *B. shini* certainly show that this is the 9th tergite (Fig. 3B, C). This tergite is entirely divided dorsally. Other well-developed segments are the 9th sternite, often with a caudal projection, and a paired ectoproct.

Internal genitalia are represented mainly by a pair of elongated divergent structures, which are usually interpreted as gonocoxites 10 (Chang et al., 2018; Q. Liu et al., 2018; Z. Peng et al., 2024a, b), but they can be interpreted also as gonocoxites 9, gonapophyses 10 or gonostyli 10. Other parts of inner genitalia do not allow even such an uncertain interpretation.

If this interpretation is correct, the male genitalia of Cretanallachiidae are most similar to those of Dilaridae (partly similar to *Berothella*, partly to *Nallachius* Navás, 1909; X. Liu et al., 2017, figs. 6, 11). In other families of Neuroptera, the 9th tergite is not so strongly extended in the caudal direction, including all genera of Psychopsidae (see Oswald, 1993b). Unfortunately, the male genitalia of Kalligrammatidae are unknown.

4.1.4. Female genitalia

Female genitalia are known in six species: *Burmogramma liui* Q. Liu et al., 2018, *Burmopsychops limoae* Lu et al., 2016b, *B. isodiametrus* Peng, Shi, Ren & Yang in Z. Peng et al., 2024a, *Cretanallachius magnificus* Huang et al., 2015, *Oligopsychopsis groehni* (Makarkin, 2017), and *O. grandis* Q. Liu et al., 2018 (Lu et al., 2016a; Makarkin, 2017; Chang et al., 2018; Q. Liu et al., 2018; Z. Peng et al., 2024a).

The most conspicuous part of the genitalia is the 9th tergite, which is elongated downwards with a long and wide ventro-caudal extension (Figs. 3D–F). Presumable gonocoxites 8 and presumable gonapophyses 8 are small structures, situated far from each other. Gonocoxites 9 are broad and elongate with well-developed gonostyli 9. The paired ectoproct is well developed, often elongate.

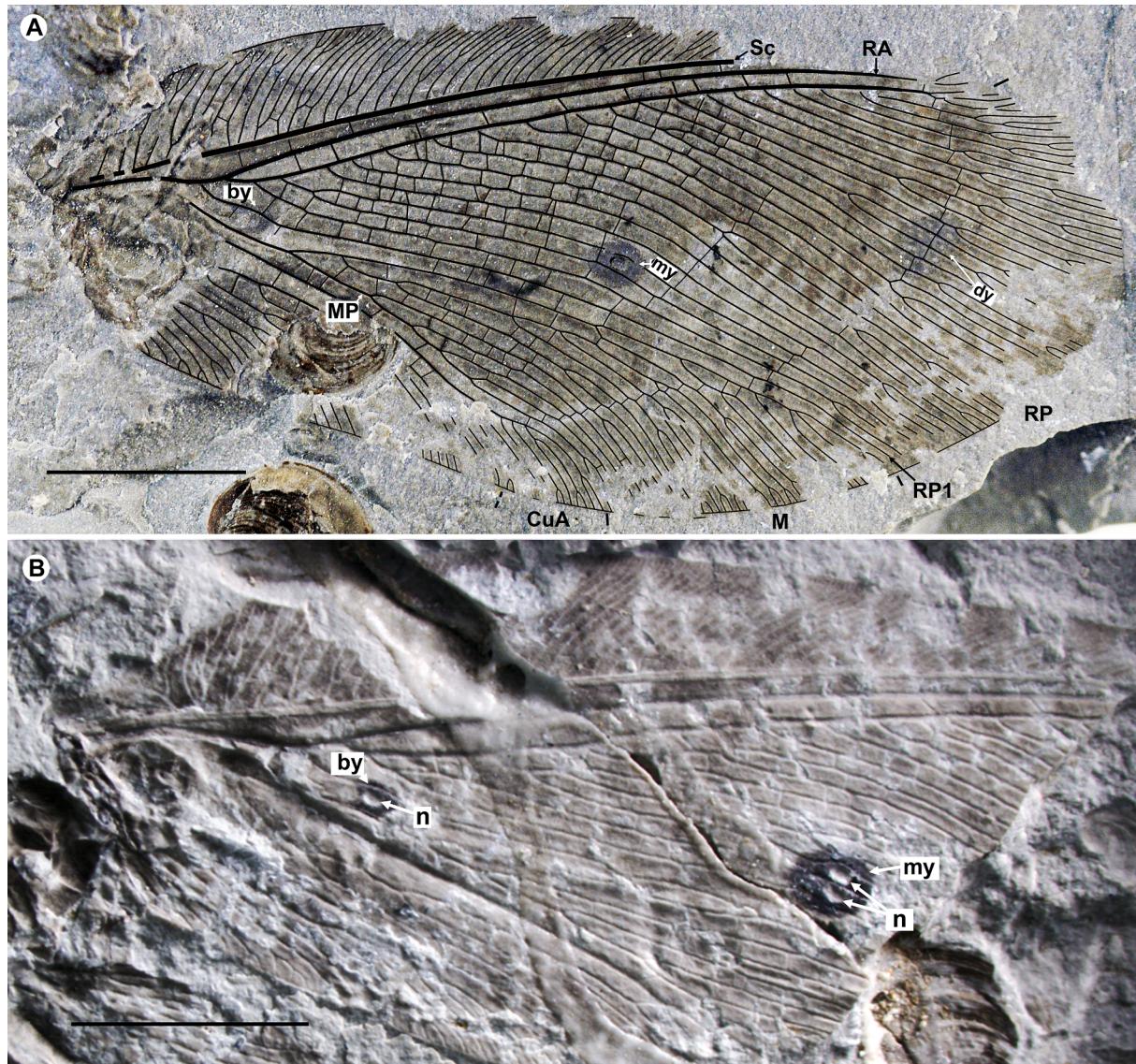
The genital segments of cretanallachiid females are in general more or less similar to those of some other families of Neuroptera, particularly Psychopsidae (Tjeder, 1960, figs. 257, 383), some Ithonidae (Penny, 1996, figs. 6, 7; Ardila-Camacho et al., 2020, figs. 3f, g), Polystoechotidae (Oswald, 1998, fig. 4), Hemerobiidae (Oswald, 1993, figs. 24, 68, 87, 93, 105, 137, 147, 151, 161, 169, 181), and some Chrysopidae (but gonostyli 9 in these are reduced: Aspöck and Aspöck, 2008, fig. 127; Tauber, 2019, figs. 9c, d, f). In these families, the 9th tergite is prolonged downwards, often reaching the ventral side, and is expanded ventro-caudally. But the ventro-caudal extension in Cretanallachiidae is much greater than in these families, and might be derived from any of them. The state of these genital characters in all these families is plesiomorphic in relation to the state that we find in the Cretanallachiidae.

The only known species of Kalligrammatidae with clearly visible female genitalia is *Oregramma illecebrosa* Yang et al., 2014 (Kalligrammatinae). Their structure is similar to that of Dilaridae, in particular bearing a long saber-like ovipositor being formed by two gonocoxites 9 with reduced gonostyli 9.

Thus, the female genitalia of Cretanallachiidae are similar to several families having plesiomorphic conditions, and dissimilar to those of known Kalligrammatidae and Dilaridae.

4.1.5. Wing venation

4.1.5.1. *Costal space*. The costal space of the fore- and hind wings is very broad in the medial and/or distal parts, but strongly narrowed in the proximal part, so that the costal margin is convex. Such a shape of the space is characteristic only of Cretanallachiidae, and is observed in all of its genera. The narrowing of the proximal part of the costal space is found in many families (e.g., Dilaridae, Chrysopidae, Myrmeleontoidea), but it is not so strongly broad (often narrow) medially and distally. The broad costal space occurs in some other families (Psychopsidae, Osmylopsychopidae, the chrysopid Apochrysinae, some Kalligrammatidae), but their proximal part is also broad.


4.1.5.2. *Humeral veinlet in the forewing*. The humeral veinlet is simple and crossvein-like in all Cretanallachiidae. This condition is present in all genera of many families (e.g., Sisyridae, Nevorthidae, Dilaridae, Osmylididae, Chrysopidae, Ascalaphidae, Myrmeleontidae, Nemopteridae) and some genera in many other families (e.g., Hemerobiidae, Berothidae, Mantispidae). However, this veinlet is recurrent and branched in most psychopsoids (all Psychopsidae and Osmylopsychopidae; many kalligrammatids: Liassopsychopinae, Sophogrammatinae, at least some Kallihemerobiinae, *Protokalligramma* Yang et al., 2011). In the Kalligrammatidae, it is simple and crossvein-like only in Kalligrammatinae.

4.1.5.3. *Distal relationships of ScP and RA*. Sc and RA are widely separated distally in all Cretanallachiidae. This condition is characteristic of many families (e.g., Dilaridae, Chrysopidae, Mantispidae, most Hemerobiidae, some Berothidae, Psychopsidae, Aetheogrammatidae). These veins are fused in most Kalligrammatidae, except Liassopsychopinae, in which Sc and RA approach apically, but are not fused (see Ansorge and Makarkin, 2021).

4.1.5.4. *Crossveins in the subcostal space*. Numerous crossveins in this space are present in all Cretanallachiidae as well as many other families (e.g., Kalligrammatidae, Psychopsidae, Osmylopsychopidae, Dilaridae, some Osmylididae, Parakseneuridae, some Nymphidae, few Berothidae). Numerous subcostal crossveins can be apparently developed in a few taxa of any family of Neuroptera.

4.1.5.5. *Media*. In Cretanallachiidae, M is divided into MA and MP relatively near wing base. MA is shallowly forked, dichotomously or pectinately. The posterior trace of the fore- and hind wing MP often have several anteriorly-directed pectinate branches. This condition is minimally developed in *Cretanallachius* where the posterior trace of M is forked only distally (see Huang et al., 2015, fig. 5b; Lu et al., 2016a, fig. 2b), and maximally in *Burmogramma*, *Burmopsychops* and *Oligopsychopsis*, where the posterior trace of MP bears up to seven anteriorly-directed branches (see Fig. 1A; Q. Liu et al., 2018, figs. S1b, f, S3b). The basal branch of MP is often again pectinately forked, with up to four branches (Fig. 1A).

This structure of MP (i.e., anteriorly-directed pectinate branching) is rare in Neuroptera. It is found in many genera of Kalligrammatidae (Kalligrammatinae, Kallihemerobiinae, *Meioneurites spectabilis* and *Ithigrama multinervium*), the Triassic *Petropsychops superba* Riek, 1956 (Osmylopsychopidae), and a group of undescribed ithonoid-like Neuroptera from the Middle Jurassic of China (Fig. 4). However, the anteriorly-directed pectinate branching of the forewing MP is absent in the basal

Fig. 4. Forewings of ithonoid-like Neuroptera from the Middle Jurassic of Daohugou (China). A, specimen CNU-NEU-NN2011062; B, specimen CNU-NEU-NN 2002005 (photo: Q. Yang). by, basal eyespot; dy, distal eyespot; my, middle eyespot; n, nygma. Scale bars are 5 mm.

Kalligrammatidae (i.e., *Protokalligramma* Yang et al., 2011, Liasopsychopinae and Sophogrammatinae: see Ansorge and Makarkin, 2021). M is dichotomously forked in these groups.

4.1.5.6. Distal nygma. Nygma are small sensory spots on wings, usually two in both fore- and hind wings or only in the hind wing: basal (between M and R/RP near the wing base) and distal (usually between RP1 and RP2 in the centre of the wing). The distal nygma is present in the following families of Neuroptera: some †Permithonidae (mainly in the hind wing), Nevorthidae, Osmylidae, Ithonidae, Polystoechotidae, most Dilaridae, †Osmylopsychopidae, and possibly some †Prohemerobiidae. In general, the presence of nygma is an indicator of the basal position of a family. The more advanced groups lack them (e.g., Chrysopoidea, Myrmeleontoidea, Mantispooidea, Kalligrammatidae, Hemerobiidae). The distal nygma is confidently detected in two genera of Cretanallachiidae, i.e., *Oligopsychopsis*

and *Cretogramma* (Fig. 1; Makarkin, 2017, fig. 10; Q. Liu et al., 2018).

4.1.5.7. Eyespots on wings. A well-developed eyespot in the centre of the wings is present only in one genus of Cretanallachiidae, i.e., *Burmogramma* (Q. Liu et al., 2018, figs 1g, h). Other species possess at most a brownish spot (often small) in that place, sometimes with a very small distal nygma (Fig. 1), or they lack spots (e.g., *Burmopsychops isodiametrus*, *Lasiogramma ooideum*).

Most Kalligrammatidae have eyespots (Ansorge and Makarkin, 2021). These are absent only in Sophogrammatinae and in some other genera (e.g., *Protokalligramma* Yang et al., 2011; *Abrigramma* Yang et al., 2014; not clearly discernible in *Affinigramma* Yang et al., 2014).

Eyespots are also present in the forewing of other Neuroptera: four eyespots in the large *Calopsychops extinctus* Panfilov, 1980 (Psychopsidae or Osmylopsychopidae) from the Upper Jurassic of Karatau (Kazakhstan); and up to three eyespots in a group of

undescribed ithonoid-like Neuroptera from the Middle Jurassic of China (Fig. 4) (see below for further details).

4.1.5.8. Proximal branches of RP in the forewing. Four genera of Cretanallachiidae possess one to three basal branches of RP originating separately on RA: *Cretogramma*, *Burmopsychops*, *Oligopsychopsis*, and *Lasiogramma* (Fig. 1). Such a condition (i.e., two or more branches of RP separately originating on RA) is characteristic of Hemerobiidae, Aetheogrammatidae, some Kalligrammatidae, some Dilaridae, some Ithonidae. A single RP (a plesiomorphic state) is present in *Cretanallachius* and *Burmogramma*, and in the vast majority of other Neuroptera.

4.1.5.9. CuA in the forewing. The forewing CuA of Cretanallachiidae is shallowly forked distally or even simple as in *Cretanallachius magnificus* and *Oligopsychopsis groehni* (Lu et al., 2016a, fig. 2b; Makarkin, 2017, fig. 9A). Its branching mode is unclear in *Burmogramma liui*. The forewing CuA of most other Neuroptera are pectinately forked distally, but shallowly forked in the advanced Kalligrammatidae (e.g., Kalligrammatinae), most Myrmeleontoidea (except †Babinskaiidae), and few taxa in other families (e.g., the dilarid *Neonallachius krooni* (Minter, 1986); Minter, 1986, figs. 3, 4).

4.1.5.10. CuP in the forewing. The forewing CuP in Cretanallachiidae is usually pectinately forked, having from eight branches located almost along entire anterior trace of the CuP (e.g., *Oligopsychopsis grandis*: Fig. 1) to two distal branches (e.g., *Cretanallachius magnificus*, *Burmopsychops shihi*). It is shallowly forked in *Lasiogramma* and unclear in *Burmogramma*. In most other Neuroptera it is similarly pectinately forked, often only distally (e.g., Nevrorthidae, Berothidae, Sisyridae, Ithonidae, Polystoechotidae, Dilaridae). In most Kalligrammatidae, the forewing CuP is shallowly forked, except basal Liassopsychopinae in which CuP is dichotomous (Q. Liu et al., 2014, fig. 2C; Ansorge and Makarkin, 2021, figs. 4C, 5C).

4.1.5.11. Crossveins in the radio-medial space. Crossveins in this space of Cretanallachiidae are usually numerous, irregularly arranged with indistinctly formed outer graduate series (except *Burmogramma liui*). Numerous irregularly-arranged crossveins are found in most families of Neuroptera (e.g., Osmylopsychopidae, some Dilaridae, Myrmeleontoidea, Osmyloidea). But the outer graduate series is present only in some of these (e.g., Osmylopsychopidae, some Osmylidae).

4.1.5.12. Basal crossvein between R and M in the hind wing. The basal crossvein 1r-m is long and sinuous in some Cretanallachiidae. It is observed in *Cretanallachius magnificus* and *Oligopsychopsis grandis* (Fig. 1C), absent in *Burmopsychops shihi*, *B. isodiametru*s, and probably absent *Burmogramma liui*.

This plesiomorphic character state is very important, since its reversion is extremely unlikely, if not impossible, at least it has never been reported by any author. It occurs in most basal families of the order (e.g., †Permithonidae, Nevrorthidae, Sisyridae, Osmylidae, Ithonidae, Polystoechotidae, and some Dilaridae). In most known Kalligrammatidae, 1r-m is straight, not distinguished from other basal crossveins (e.g., Makarkin et al., 2009, figs. 1A, 2C; Q. Liu et al., 2015, figs. 2.3, 4.2). However, in a recently discovered hind wing of the basal Lower Jurassic subfamily Liassopsychopinae, it is longitudinal (but not so long), similar to its state in the Jurassic Parakseneuridae (Yang et al., 2012, figs. 15C; pers. obs.). This condition is intermediate from plesiomorphic to apomorphic in these two taxa.

4.1.5.13. CuA in the hind wing. The hind wing CuA of Cretanallachiidae is usually pectinately forked, having from three (e.g., Z. Peng et al., 2024a, figs. 2D, 3D) to ten branches (e.g., Fig. 1C; Q. Liu et al., 2018, fig. S1d). However, it is shallowly forked in *Cretanallachius* (Lu et al., 2016a, fig. 2b) and *Lasiogramma* (Z. Peng et al., 2024b, figs. 3F, H). The hind wing CuA is also pectinately forked in many families of Neuroptera (most Dilaridae, Nevrorthidae, Berothidae, Polystoechotidae, some Kalligrammatidae, and others). Therefore, this condition is typical for the order.

4.1.5.14. CuP in the hind wing. The hind wing CuP of most Cretanallachiidae is relative short, simple or at most terminally bifurcated, and originates far from the wing base. This vein appears to be the most proximal branch of CuA and undoubtedly represents an apomorphic condition. It is clearly observed in *Cretanallachius magnificus* (Lu et al., 2016a, fig. 2b) and *Oligopsychopsis grandis* (Fig. 1C). The hind wing CuP of *Burmopsychops shihi* and probably *Burmogramma liui* originates rather near the wing base, but is weakly branched and not parallel to CuA (i.e., this state is more plesiomorphic).

The similar apomorphic state of CuP occurs only in Dilaridae among Neuroptera (all three their subfamilies), and one species of Ithonidae (i.e., *Oliarces clara* Banks, 1908).

The CuP of *Nallachius* Navás, 1909 originates far from the wing base, and is often pectinately forked with short simple branches (see e.g., Carpenter, 1947, fig. 2; Adams, 1970, figs. 1, 11, 12, 14D; Penny, 2002, figs. 435–437; Martins and Amorim, 2015, fig. 2A; Martins and de Araújo, 2016, fig. 3; Lara and Perioto, 2017, fig. 2). In some *Neonallachius* Nakahara, 1963 (Nallachiinae), CuP is considered absent (X. Liu et al., 2017). Although a complete reduction of CuP in these species cannot be ruled out, CuP may be represented by a proximal-most simple branch of the apparent CuA, which in this case differs little from the state of *Nallachius*. Such an apomorphic condition is also present in the monotypic Berothellinae (see X. Liu et al., 2017, fig. 5I). In *Neonallachius sinuolatus* Li and Liu, 2021, the very weak CuP is depicted in a drawing as originating relatively close to the wing base (Li and Liu, 2021, fig. 2A), but it is not discernible in the photograph (Li and Liu, 2021, fig. 1C). It is possible that all of this “CuP” or only its proximal portion is a flexion fold.

Most species of *Dilar* Rambur, 1838 (Dilarinae) exhibit the plesiomorphic condition of CuP (i.e., originating near the wing base with long forked branches), but some species of this genus have an apomorphic condition similar to that of *Neonallachius* (see e.g., Monserrat, 1988, figs. 17, 18). A similar plesiomorphic condition as found in *Dilar* is present in many taxa of Neuroptera.

The hind wing CuP of all Kalligrammatidae is fundamentally different in configuration from that of Cretanallachiidae. It is a long vein originating near the wing base, and parallel (or nearly so) to CuA for a long distance (see e.g., Ren and Oswald, 2002, fig. 2; Makarkin et al., 2009, figs. 1, 2; Yang et al., 2014, figs. 10C, 13C, 14D; Q. Liu et al., 2015, figs. 2–4). In other Psychopoidea (including fossils), this vein also does not resemble a branch of CuA, as it originates near the wing base with at least a few long, often pectinate branches (see e.g., Khramov and Makarkin, 2015, figs. 9, 10; Y. Peng et al., 2016, figs. 13B, 15B, 19D, 23B).

4.2. Monotypy of Cretanallachiidae

The analysis here supports genera of Cretanallachiidae as a monophyletic group: all males have bipectinate antennae, the structure of the mouthparts and the venation are similar, and the genital segments of males and females have a similar configuration. The bipectinate antennae in males and the long ventro-

caudal extension of the 9th tergite of females are unique among Neuroptera and, therefore, are autapomorphies of the family.

Oligopsychopsis grandis Q. Liu et al., 2018 is one of most typical representatives of Cretanallachiidae (Fig. 1). Its basal crossvein 1r-m is long and sinuous, CuP is simple, originating far from the wing base in the hind wing, and the distal nygma is present in both the fore- and hind wing.

Burmogramma is most unlike the other genera of Cretanallachiidae, and the family was assigned to Kalligrammatidae by Q. Liu et al. (2018) mainly based on the configuration of the forewing MP and the presence of eyespots. Indeed, its eyespot more or less resembles that of Kalligrammatidae. However, it has no swellings (embossed structures in the central pigmented disk of an eyespot), which are often present in all subfamilies that have an eyespot, i.e., Liassopsychopinae, Kalligrammatinae and Kallihereroobiinae (Ansorge and Makarkin, 2021). The eyespot in *Burmogramma* is located where the brownish spot is in other genera and may have developed independently of the eyespots in Kalligrammatidae.

Burmogramma is larger and has denser venation, which is not fundamentally different from that of other genera of the family. Its proboscis does not form a sucking tube, unlike that of all known Kalligrammatidae. Also, the female genitalia of *Burmogramma* does not principally differ from those of other Cretanallachiidae, although in this genus some segments (gonocoxites 8, gonaphophyses 8, gonostyli 9) are not preserved.

Thus, *Burmogramma* certainly belongs to the family Cretanallachiidae, the most distant from its other genera.

4.3. Systematic position of Cretanallachiidae

The presence of two important plesiomorphic features of some genera (the long and sinuous basal crossvein 1r-m in the hind wing, and at least the distal nygmata in both wings) indicates a basal position of Cretanallachiidae. These two conditions are present in †Permithonidae, Nevorthidae, Ithonidae s. str., Polystoechotidae, Dilaridae, Osmylididae, and †Osmylopsychopidae. The sinuous 1r-m is present in †Prohemeroobiidae, Sisyridae, Rhachiberothidae, few Berothidae (mainly the Mesozoic †Mesithoninae), Mantispidae (only Symphrasinae) and Hemerobiidae, but the nygmata are absent in these. A proximal nygma is present in Psychopsidae, but its hind wing 1r-m is straight. The basal Lower Jurassic Kalligrammatidae (Liassopsychopinae) and the Jurassic †Parakseneuridae have similar venation, but this is strongly dissimilar to that of Cretanallachiidae. Both lack nygmata, but their 1r-m is in an intermediate condition, from plesiomorphic to apomorphic, being relatively short but oriented longitudinally (Yang et al., 2012, fig. 15C; pers. obs.). Advanced Kalligrammatidae do not possess both of these plesiomorphic character states.

The venation of two superfamilies is strongly dissimilar to that of Cretanallachiidae, including the loss of these two plesiomorphies: Myrmeleontoidea (Nymphidae, †Palaeoleontidae, †Arripeneuridae, †Babinskaiidae, †Cratosmylididae, Nemopteridae, Myrmeleontidae, Ascalaphidae) and Chrysopoidea (†Meso-chrysopidae, †Ascalochrysidae, Chrysopidae). It is clear that Cretanallachiidae are very distantly related to these families.

Most other families, some which have these plesiomorphic traits, are also distant to Cretanallachiidae (i.e., Nevorthidae, Sisyridae, Osmylididae, †Saucrosmylididae, †Panfiloviidae, †Grammalingiidae, †Osmylopsychopidae, Psychopsidae, and Mantispidae). These families have either genital or venational (or both) characters that differ greatly from those of the Cretanallachiidae.

Only a few families can be considered closely related to Cretanallachiidae.

Q. Liu et al. (2018) regarded Cretanallachiinae “a relatively advanced subfamily” within Kalligrammatidae, and in their cladogram, the subfamily represents the youngest and most advanced group (Q. Liu et al., 2018, fig. 3). However, this contradicts the basal position of the family based on the presence of nygmata and a long sinuous 1r-m, as these characters are apomorphic in other Kalligrammatidae. Even if we accept Cretanallachiinae as a subfamily of Kalligrammatidae, it represents the earliest divergence of the family, but early Kalligrammatidae probably had chewing mouthparts (detected in *Sophogramma* Ren and Guo, 1996; but possibly in more genera). Of course, it is plausible that siphonate mouthparts evolved independently in Cretanallachiinae and other Kalligrammatidae. However, this would mean that Cretanallachiinae and other Kalligrammatidae represent two lineages that diverged at least in the Lower Jurassic, consistent with the family status of Cretanallachiinae. Some venational character states of Kalligrammatidae are completely different from those in Cretanallachiinae. For example, the structure of the hind wing Cu as found in Cretanallachiinae (the combination of a strongly pectinate CuA and a relatively short, simple or little-branched CuP) never occurs in Kalligrammatidae. Thus, a kalligrammatid affinity of Cretanallachiinae cannot be confirmed. Their siphonate mouthparts and eyespots most likely evolved independently in these groups.

The venation and other characters of other psychopsoid families (Osmylopsychopidae and Psychopsidae) are so different from that of the Cretanallachiidae that they may be immediately discounted as close relatives. A putative psychopsoid affinity of Cretanallachiidae (see Lu et al., 2016a; Chang et al., 2018) appears to be based on superficial similarities.

The Cretanallachiidae are likely most closely related to Dilaridae. These taxa share many venation character states: nygmata are present in both fore- and hind wings; Sc and RA are widely separated distally, subcostal crossveins are numerous, crossveins in the radial space are irregularly arranged, the humeral veinlet is simple, the forewing RP1 originates separately on RA in some taxa, the basal crossvein 1r-m is sinuous, and the hind wing CuP originates far from the wing base in most genera. The 9th tergite of males in both families is similarly constructed.

Cretanallachiidae were initially considered to be a subfamily of Dilaridae (Makarkin, 2017), for which there was a precedent. Although the long, saber-shaped ovipositor of Dilaridae and the peculiar genitalia of female Cretanallachiidae are very different, this cannot serve as the sole basis for classifying them into different families. In the family Mantispidae, Symphrasinae possess a long ovipositor, while female genitalia in other taxa of the family plesiomorphically lack such an ovipositor.

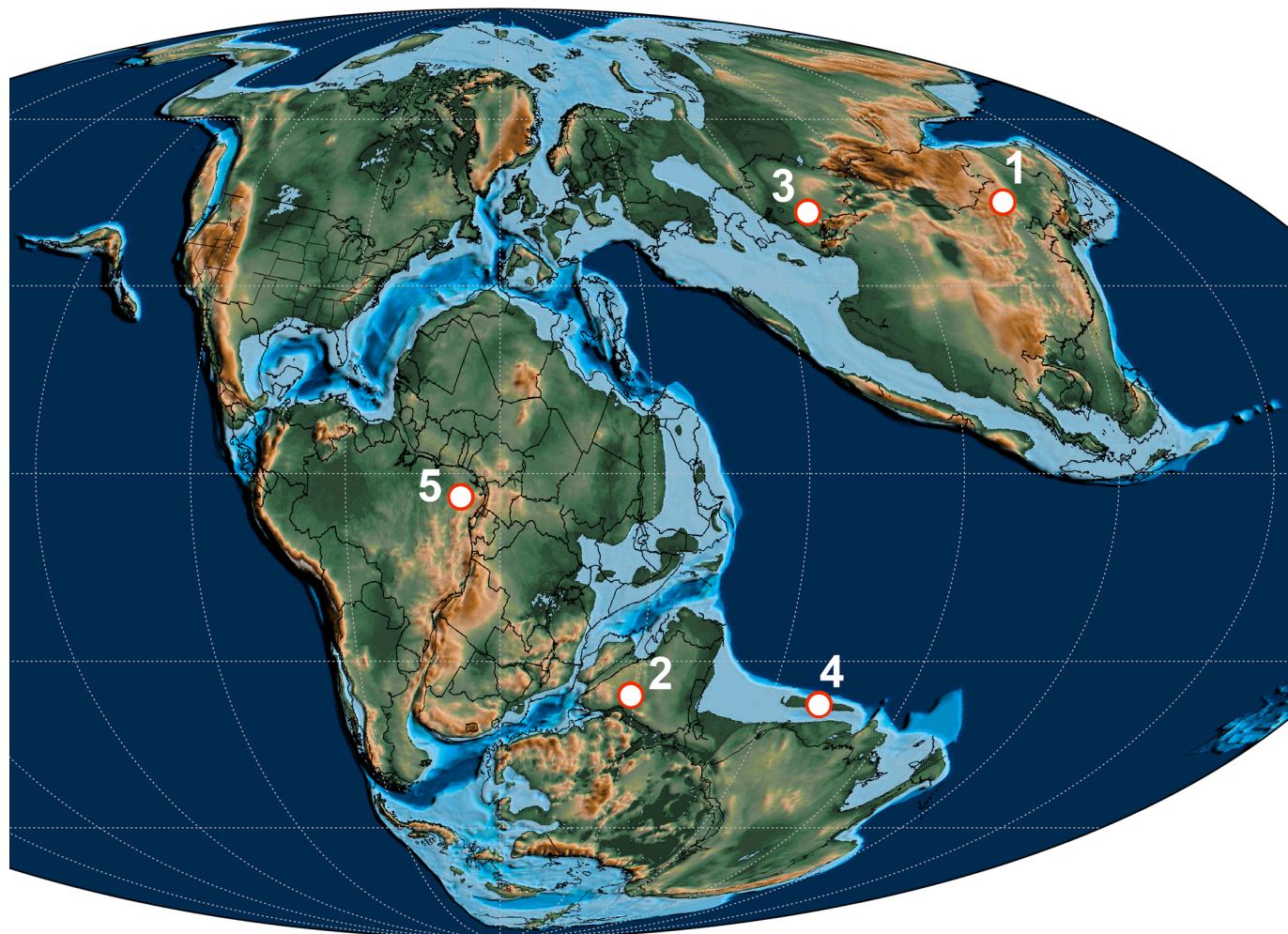
Cretanallachiidae may theoretically be descendants of ancient Dilaridae, which had a long ovipositor. However, dilarids are unknown before the mid-Cretaceous, probably originating in the Jurassic. In this regard, a group of undescribed ithonoid-like Neuroptera from the Middle Jurassic of China (Daohugou) deserve special consideration most promising as possible ancestors of Cretanallachiidae (Fig. 4).

First, their forewing venation is similar to that of Cretanallachiidae, e.g., the subcostal crossveins are numerous; RP1 originates separately on RA; the crossveins in the radial space are arranged irregularly proximally and form the outer gradate series distally; the pectinate branches of the posterior trace of M are anteriorly directed; and CuA has few distal branches.

Secondly, they possess eyespots, but with a different structure. The basal and medial eyespots are situated at the location of the basal and distal nygmata, respectively, and contain in the centre one (basal) and one to two (medial) circular embossed structures, which are undoubtedly large nygmata similar to the swellings of

Kalligrammatidae ('n' in Fig. 4). The wing shown in Fig. 4B is particularly indicative, showing that the origin of the swellings of Kalligrammatidae from nygmata is very plausible. The distal eyespot is a large flat dark spot with several small pale spots. Although its structure rather resembles that of eyespots of some Kalligrammatidae, its location in the distal part of the wing suggests that the distal eyespot of this itonoid-like group and the eyespots of Kalligrammatidae are convergent.

Therefore, Cretanallachiidae are more similar to this taxon than they are to Kalligrammatidae, and they may be theoretically descendants of this itonoid-like group. If so, the taxon should have been widespread in the Jurassic to Lower Cretaceous, including Gondwana (see below, Biogeography).


Further, the venation of Cretanallachiidae is rather similar to that of extant Ithonidae s. str., which also has Sc and RA widely separated distally; radial crossveins irregularly arranged; RP1 separately originating on RA in the forewing (some genera); and the hind wing CuP originating far from the wing base in one genus. The ligula of Ithonidae is similarly strongly reduced.

Thus, considering all of this evidence, Cretanallachiidae are likely closely related to Dilaridae, a Middle Jurassic itonoid-like taxon, and Ithonidae. While many venational characters support this, the configuration of the hind wing CuP is particularly important, as this condition is present only in Cretanallachiidae, most Dilaridae, and one genus of Ithonidae.

4.4. Biogeography

It is well known that the West Burma Block (West Burma Terrane), where Kachin amber was found, was formerly a part of Gondwana, namely Australia (Metcalfe, 2017; Poinar, 2019; Westerweel et al., 2019, 2025). The fact that the family has only been found in Kachin amber suggests that it may have formed from a proto-cretanallachiid Gondwanan taxon during the drift of the West Burma Block from Australia to Asia. The Burma Block, as expected, separated from Australia in the Upper Jurassic (Fig. 5) and was located almost on the equator during the time of the Kachin amber forest (Westerweel et al., 2025). Long-term island isolation in an equatorial climate has resulted in the formation of many endemic (often bizarre) family-group taxa, not only Cretanallachiidae (e.g., Rasnitsyn and Öhm-Kühnle, 2018; Ogaza et al., 2025).

What Gondwanan taxon might be ancestral to the Cretanallachiidae? The single known Jurassic Gondwanan Neuroptera is an unnamed small wing from the Upper Jurassic of Telengana (India) deposited in the Museum of Comparative Zoology (Harvard University, 2018). The neuropteran assemblage of the Crato Formation of Brazil is numerous and diverse, but it is Aptian, i.e., significantly younger than the separation of the Burma Block. The assemblage is dominated by Myrmeleontoidea and has lesser amounts of Ithonidae, Kalligrammatidae, Psychopsidae,

Fig. 5. A paleogeographical map of Earth in the Upper Jurassic (155 Ma) showing localities mentioned in the text (after Scotese et al., 2024). 1, Daohugou, China (Middle Jurassic); 2, Telengana, India; 3, Karatau, Kazakhstan; 4, West Burma Block; 5, Crato Formation, Brazil (Lower Cretaceous, Aptian).

Osmylidae, Chrysopidae, Mesochrysopidae, Berothidae and possibly Sisyridae (Martins et al., 2022). Of these, only Ithonidae and Kalligrammatidae can be considered close to the Cretanallachiidae. These families are represented in the Crato Formation by one to two genera. Three species of the kalligrammatid genus *Makarkinia* Martins-Neto, 1997 are fragmentarily preserved (Bechly and Makarkin, 2016; Machado et al., 2021). The genus is tentatively assigned to the subfamily Kalligrammatinae, not basal Kalligrammatidae. Of Ithonidae, *Principiala* Makarkin and Menon, 2007 belongs also to the advanced *Principiala* genus-group which is represented in Kachin amber (X. Liu et al., 2025); *Crato-voluptia* Martins-Neto and Rodrigues, 2009 is inadequately described.

Thus, no proto-cretanallachiid candidates have yet been found in Gondwana, but dilarid-like and ithonoid taxa might be found there in future.

4.5. Habitats

Most authors interpret the Myanmar palaeoenvironment during amber deposition as a humid, warm tropical forest (e.g., Grimaldi et al., 2002; Xing et al., 2018; Lu et al., 2019b, 2020). Although many fossil organisms found there are indeed moisture-loving (e.g., ferns, bark-growing liverworts, Onychophora, cockroaches), there is some evidence of dry conditions: fire-adapted angiosperms with needle-like xeromorphic leaves (Shi et al., 2022); the presence of Nemopteridae (Lu et al., 2019b), indicators of arid or semiarid environment; the occurrence of some Araripeneuridae that are very similar to those inhabited semi-arid ecosystems of the Aptian Brazil (Lu et al., 2019a). These dry conditions could have been seasonal, but it cannot be ruled out that semi-arid ecosystems existed alongside humid forests. So that the palaeoenvironment of the West Burma Block in that time was more reminiscent of extant equatorial Africa than Kalimantan or Malaysia.

Cretanallachiidae probably lived in humid tropical forests dominated by gymnosperms, accompanied by diverse angiosperms (Shi et al., 2022).

4.6. Feeding habits

Based on the structure of their mouthparts, Cretanallachiidae probably fed on flowers, nectar and/or pollen, or both. Their proboscis was short, from less than 1 mm (*Cretanallachius*) to about 3 mm (*Burmogramma*) long, excluding palpi, which are somewhat longer. Diverse angiosperm flowers in Kachin amber were mostly very small, with a calyx of 0.3–2 mm in diameter, often shallow (Poinar and Chambers, 2005, 2007, 2017, 2020a, b; Poinar et al., 2007a, b, 2008, 2013; Z. Liu et al., 2018; Chambers and Poinar, 2020; Shi et al., 2022). So that the proboscis of Cretanallachiidae would have been suitable to feed on nectar from these flowers.

A fairly large number of Paradoxosisyrrinae had a proboscis that was similarly short, with a length ranging from 0.6 mm to approximately 1 mm (Makarkin, 2016; Khramov et al., 2019, 2020). They likely share the same ecological niche with Cretanallachiidae, although they possibly divided it in some way, although there is no evidence yet of this.

Cretanallachiidae and Paradoxosisyrrinae may have theoretically fed on liquid pollination drops of some gymnosperms (e.g., Cycadales and Bennettitales), but this is rather unlikely. The proboscises of small Mecoptera from Kachin amber (Aneuretopsychidae, Pseudopolycentropodidae) were short, similar in length to the proboscises of these Neuroptera, and these scorpionflies are thought to be associated with both flowers and gymnosperms (Lin et al., 2019). However, these families of Mecoptera lived before the

emergence of angiosperms, and they may have retained their dietary preferences into the mid-Cretaceous. Cretanallachiidae and Paradoxosisyrrinae emerged when angiosperms were beginning their great diversification. Their feeding on flowers may then have followed this early phase of their rise to ecological dominance.

The only species of Kalligrammatidae known from Kachin amber (*Eletrogramma transformatum* Z. Peng et al., 2024b) is represented by incomplete wings, and its mouthparts are unknown. The extinct Bennettitales were found in Kachin amber (Shi et al., 2022). They are suggested to have been one of the gymnosperms that kalligrammatids with sucking mouthparts fed on (Labandeira et al., 2010, 2016). However, the venation of this species is most similar to that of *Sophogramma* (see Makarkin and Ansorge, 2025), which possesses mandibulate (chewing) mouthparts. Thus, *E. transformatum* may not have fed on nectar and/or pollen, but was carnivorous.

Other flower visitors among Kachin amber Neuroptera are pollen feeders. At least two genera are found here: *Cretocroce* Lu et al., 2019b (Nemopteridae) and *Rhynchoberotha* Wang et al., 2025 (Berothidae). The mouthparts are chewing in these genera, but their rostrum is similarly elongated (Lu et al., 2019b, fig. 3A; Wang et al., 2025, fig. 7A). All extant Nemopteridae and some Berothidae (e.g., *Nyrma kervillea* Navás, 1933) are specialized pollen feeders.

5. Conclusions

Cretanallachiidae constitute a distinct family, autapomorphies of which are the bipectinate antennae in males and the long ventro-caudal extension of 9th tergite in females. The family is likely closely related to Dilaridae, a Middle Jurassic ithonoid-like taxon, and to a lesser extent to Ithonidae, but the relationship between these remains unclear. This raises a new question: are these four taxa really closely related? To answer this, new fossil species and their detailed, accurate descriptions are needed.

CRediT authorship contribution statement

Vladimir N. Makarkin: Writing – review & editing, Writing – original draft, Investigation.

Declaration of competing interest

The author declares that he has no any competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

I thank Arnold H. Staniczek (Staatliches Museum für Naturkunde Stuttgart, Germany) for photographs of *Oligopsychopsis grandis* and other help; Bo Wang (Nanjing Institute of Geology and Palaeontology, China), Qiang Yang and Zihao Peng (Guangzhou University, China) for photographs of Cretanallachiidae and other fossils; S. Bruce Archibald (University of British Columbia, Canada) for editing the English and providing helpful advice; and anonymous reviewers for providing valuable suggestions to improve this manuscript. The research was carried out within the framework of the state assignment of Ministry of Science and Higher Education of the Russian Federation (theme No. 124012400285-7).

Data availability

No data was used for the research described in the article.

References

Adams, P.A., 1970. A review of the New World Dilaridae. *Postilla* 148, 1–30.

Ansorge, J., Makarkin, V.N., 2021. The oldest giant lacewings (Neuroptera: Kalligrammatidae) from the Lower Jurassic of Germany. *Palaeworld* 30, 296–310. <https://doi.org/10.1016/j.palwor.2020.07.001>.

Artila-Camacho, A., Castillo-Argaez, R., Martínez, J.I., 2020. A new species of moth lacewing from the Mesoamerican genus *Adamsiana* Penny 1996 (Neuroptera: Ithonidae). *Neotropical Entomology* 49, 435–444. <https://doi.org/10.1007/s13744-020-00773-y>.

Aspöck, U., Aspöck, H., 2008. Phylogenetic relevance of the genital sclerites of Neuroptera (Insecta: Holometabola). *Systematic Entomology* 33, 97–127. <https://doi.org/10.1111/j.1365-3113.2007.00396.x>.

Banks, N., 1908. A new genus and species of Neuroptera. *Entomological News* 19, 203–204.

Banks, N., 1934. Supplementary neuropteroid insects from the Malay Peninsula, and from Mt. Kinabalu, Borneo. *Journal of the Federated Malay States Museums* 17, 567–578.

Bechly, G., Makarkin, V.N., 2016. A new gigantic lacewing species (Insecta: Neuroptera) from the Early Cretaceous of Brazil confirms the occurrence of Kalligrammatidae in the Americas. *Cretaceous Research* 58, 135–140. <https://doi.org/10.1016/j.cretres.2015.10.014>.

Breitkreuz, L.C.V., Winterton, S.L., Engel, M.S., 2017. Wing tracheation in Chrysopidae and other Neuropterida (Insecta): A resolution of the confusion about vein fusion. *American Museum Novitates* 3890, 1–44. <https://doi.org/10.1206/3890.1>.

Chambers, K.L., Poinar Jr, G.O., 2020. *Thymolepis toxandra* gen. et sp. nov., a mid-Cretaceous fossil flower with horseshoe-shaped anthers. *Journal of the Botanical Research Institute of Texas* 14, 57–64. <https://doi.org/10.17348/jbit.v14.i1.896>.

Carpenter, F.M., 1947. Taxonomic notes on the Dilaridae (Neuroptera). *Psyche* 54, 100–109.

Chang, Y., Fang, H., Shih, C.K., Ren, D., Wang, Y.J., 2018. Reevaluation of the subfamily Cretanallachiiinae Makarkin, 2017 (Insecta: Neuroptera) from Upper Cretaceous Myanmar amber. *Cretaceous Research* 84, 533–539. <https://doi.org/10.1016/j.cretres.2017.10.028>.

Crampton, G.C., 1921. The sclerites of the head, and the mouthparts of certain immature and adult insects. *Annals of the Entomological Society of America* 14, pp. 65–110.

Engel, M.S., 2005. A remarkable kalligrammatid lacewing from the Upper Jurassic of Kazakhstan (Neuroptera: Kalligrammatidae). *Transactions of the Kansas Academy of Sciences* 108, 59–62. [https://doi.org/10.1660/0022-8443\(2005\)108\[0059:ARKLFT\]2.0.CO;2](https://doi.org/10.1660/0022-8443(2005)108[0059:ARKLFT]2.0.CO;2).

Grimaldi, D.A., Engel, M.S., Nascimbene, P.C., 2002. Fossiliferous Cretaceous amber from Myanmar (Burma): its rediscovery, biotic diversity, and paleontological significance. *American Museum Novitates* 3361, 1–72. [https://doi.org/10.1206/0003-0082\(2002\)361<0001:FCAFMB>2.0.CO;2](https://doi.org/10.1206/0003-0082(2002)361<0001:FCAFMB>2.0.CO;2).

Harvard University, Museum of Comparative Zoology, 2018. MCZbase, Museum of Comparative Zoology. Harvard University. Occurrence Dataset. <https://doi.org/10.15468/p5rupv>. <http://digir.mcz.harvard.edu/ipt/resource?=>mczbase>.

Huang, D.Y., Azar, D., Cai, C.Y., Garrouste, R., Nel, A., 2015. The first Mesozoic pleasing lacewing (Neuroptera: Dilaridae). *Cretaceous Research* 56, 274–277.

Khramov, A.V., Bashkuev, A.S., Lukashevich, E.D., 2020. The fossil record of long-proboscid nectarivorous insects. *Entomological Review* 100, 881–968. <https://doi.org/10.1134/S0013873820070015>.

Khramov, A.V., Makarkin, V.N., 2015. New fossil Osmylodytidae (Neuroptera) from the Early to Middle Jurassic of Kyrgyzstan, Central Asia. *Zootaxa* 4059, 115–132. <https://doi.org/10.11646/zootaxa.4059.1.6>.

Khramov, A.V., Yan, E., Kopylov, D.S., 2019. Nature's failed experiment: long-proboscid Neuroptera (Sisyridae: Paradoxosisyriinae) from Burmese amber. *Cretaceous Research* 104, 104180. <https://doi.org/10.1016/j.cretres.2019.07.010>.

Labandeira, C.C., 2010. The pollination of mid Mesozoic seed plants and the early history of long-proboscid insects. *Annals of the Missouri Botanical Garden* 97, 469–513. <https://doi.org/10.3417/2010037>.

Labandeira, C.C., Yang, Q., Santiago-Blay, J.A., Hotton, C.L., Monteiro, A., Wang, Y., Goreva, Y., Shih, C., Siljeström, S., Rose, T.R., Dilcher, D.L., Ren, D., 2016. The evolutionary convergence of mid-Mesozoic lacewings and Cenozoic butterflies. *Proceedings of the Royal Society (B)* 283, 20152893. <https://doi.org/10.1098/rspb.2015.2893>.

Lara, R.I.R., Perioto, N.W., 2017. New records of pleasing lacewings (Neuroptera, Dilaridae) from São Paulo state, Brazil. *Check List* 13, 857–862. <https://doi.org/10.15560/13.6.857>.

Li, D., Liu, X.Y., 2021. First record of the pleasing lacewing subfamily Nallachiinae (Neuroptera: Dilaridae) from China, with description of a new species of *Neonallachius* Nakahara, 1963. *Annales Zoologici* 71, 235–241. <https://doi.org/10.3161/00034541ANZ2021.71.2.003>.

Lin, X.D., Labandeira, C.C., Shih, C.K., Hotton, C.L., Ren, D., 2019. Life habits and evolutionary biology of new two-winged long-proboscid scorpionflies from mid-Cretaceous Myanmar amber. *Nature Communications* 10, 1235. <https://doi.org/10.1038/s41467-019-09236-4>.

Linnaeus, C., 1758. *Systema naturae per regna tria naturae secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis*, tenth ed., Vol. 1. Holmiae, Salvii, p. 824.

Liu, Q., Khramov, A.V., Zhang, H.C., Jarzembski, E.A., 2015. Two new species of *Kalligramma* Handlirsch, 1919 (Insecta, Neuroptera, Kalligrammatidae) from the Jurassic of China and Kazakhstan. *Journal of Paleontology* 89, 405–410. <https://doi.org/10.1017/jpa.2015.25>.

Liu, Q., Lu, X.M., Zhang, Q.Q., Chen, J., Zheng, X.T., Zhang, W.W., Liu, X.Y., Wang, B., 2018. High niche diversity in Mesozoic pollinating lacewings. *Nature Communications* 9, 3793. <https://doi.org/10.1038/s41467-018-06120-5>.

Liu, Q., Zheng, D., Zhang, Q., Wang, B., Fang, Y., Zhang, H.C., 2014. Two new kalligrammatids (Insecta, Neuroptera) from the Middle Jurassic of Daohugou, Inner Mongolia, China. *Alcheringa: An Australasian Journal of Palaeontology* 38, 65–69. <https://doi.org/10.1080/03115518.2013.828251>.

Liu, X.Y., Aspöck, H., Winterton, S., Zhang, W.W., Aspöck, U., 2017. Phylogeny of pleasing lacewing (Neuroptera: Dilaridae) with a revised generic classification and description of a new subfamily. *Systematic Entomology* 42, 448–471. <https://doi.org/10.1111/syen.12225>.

Liu, X.Y., Lu, X.M., Wang, J.L., Xu, C.P., Zhuo, D., 2025. A new moth lacewing genus (Insecta: Neuroptera: Ithonidae) with proliferated and specialized wing venation from the mid-Cretaceous of northern Myanmar. *Palaeoentomology* 8, 35–46. <https://doi.org/10.11646/palaeoentomology.8.1.6>.

Liu, Z.J., Huang, D., Cai, C.Y., Wang, X., 2018. The core eudicot boom registered in Myanmar amber. *Scientific Reports* 8, 16765. <https://doi.org/10.1038/s41598-018-35100-4>.

Liu, X.M., Hu, J.H., Wang, B., Zhang, W.W., Ohl, M., Liu, X.Y., 2019a. New antlions (Insecta: Neuroptera: Myrmeleontidae) from the mid-Cretaceous of Myanmar and their phylogenetic implications. *Journal of Systematic Palaeontology* 17, 1215–1232. <https://doi.org/10.1080/14772019.2018.1517132>.

Liu, X.M., Liu, X.Y., 2021. The Neuroptera from the mid-Cretaceous of Myanmar: A spectacular palaeodiversity bridging the Mesozoic and present faunas. *Cretaceous Research* 121, 104727. <https://doi.org/10.1016/j.cretres.2020.104727>.

Liu, X.M., Wang, B., Yang, S.Y., Liu, X.Y., 2019b. Early evolution of Nemopteridae illuminated with the first and oldest thread-winged lacewing in Cretaceous amber. *Systematic Entomology* 44, 262–272. <https://doi.org/10.1111/syen.12328>.

Liu, X.M., Wang, B., Zhang, W.W., Ohl, M., Engel, M.S., Liu, X.Y., 2020. Cretaceous diversity and disparity in a lacewing lineage of predators (Neuroptera: Mantispidae). *Proceedings of the Royal Society (B)* 287, 20200629. <https://doi.org/10.1098/rspb.2020.0629>, 1928.

Liu, X.M., Xu, C.P., Liu, X.Y., 2022. New Cretaceous lacewings in a transitional lineage of Myrmeleontoidea and their phylogenetic implications. *Insects* 13 (5), 429. <https://doi.org/10.3390/insects13050429>.

Liu, X.M., Zhang, W.W., Liu, X.Y., 2016a. New long-proboscid lacewings of the mid-Cretaceous provide insights into ancient plant-pollinator interactions. *Scientific Report* 6, 1–12. <https://doi.org/10.1038/srep25382>.

Liu, X.M., Zhang, W.W., Liu, X.Y., 2016b. Nomenclatural validation of new genera and species of the superfamily Psychopoidea (Insecta: Neuroptera) from the mid-Cretaceous amber of Myanmar. *Zoological Systematics* 41, 323–326. <https://doi.org/10.1186/sz.201636>.

Machado, R.J.P., Freitas, A.V.L., Ribeiro, G.C., 2021. A new giant species of the remarkable extinct family Kalligrammatidae (Insecta: Neuroptera) from the Lower Cretaceous Crato Formation of Brazil. *Cretaceous Research* 120, 104724. <https://doi.org/10.1016/j.cretres.2020.104724>.

Makarkin, V.N., 2016. Enormously long, siphonate mouthparts of a new, oldest known spongillafly (Neuroptera, Sisyridae) from Burmese amber imply necrophagy or hematophagy. *Cretaceous Research* 65, 126–137. <https://doi.org/10.1016/j.cretres.2016.04.007>.

Makarkin, V.N., 2017. New taxa of unusual Dilaridae (Neuroptera) with siphonate mouthparts from the mid-Cretaceous Burmese amber. *Cretaceous Research* 74, 11–22. <https://doi.org/10.1016/j.cretres.2016.12.019>.

Makarkin, V.N., Ansorge, J., 2025. Redescription of *Kalligramma haeceli* Walther, 1904 (Neuroptera: Kalligrammatidae), a Jurassic paleontological icon, allows the redefinition of Kalligrammatinae. *Zootaxa* 5659, 69–86. <https://doi.org/10.11646/zootaxa.5659.1.4>.

Makarkin, V.N., Menon, F., 2007. First record of the fossil 'rapismatid-like' Ithonidae (Insecta, Neuroptera) from the Lower Cretaceous Crato Formation of Brazil. *Cretaceous Research* 28, 743–753. <https://doi.org/10.1016/j.cretres.2006.11.003>.

Makarkin, V.N., Ren, D., Yang, Q., 2009. Two new species of Kalligrammatidae (Neuroptera) from the Jurassic of China, with comments on venational homologies. *Annals of the Entomological Society of America* 102, 964–969. <https://doi.org/10.1603/008.102.0606>.

Makarkin, V.N., Staniczek, A.H., 2026. A remarkable new genus of Symphrasinae (Neuroptera: Mantispidae) from mid-Cretaceous amber of Myanmar, and the problem of the phylogenetic affinities of Rhachiberothidae. *Cretaceous Research* 179, 106243. <https://doi.org/10.1016/j.cretres.2025.106243>.

Makarkin, V.N., Wedmann, S., Heads, S.W., 2018. A systematic reappraisal of Arripeneuridae (Neuroptera), with description of new species from the Lower Cretaceous Crato Formation. *Cretaceous Research* 84, 600–621. <https://doi.org/10.1016/j.cretres.2017.12.018>.

Makarkin, V.N., Yang, Q., Ren, D., 2013. A new Cretaceous family of enigmatic two-winged lacewings (Neuroptera). *Fossil Record* 16, 67–75. <https://doi.org/10.1002/mmng.20130002>.

Martins, C.C., Amorim, D.S., 2015. First record of pleasing lacewings (Neuroptera: Dilaridae) in São Paulo state, Brazil. *Check List* 11, 1538. <https://doi.org/10.15560/11.1.1538>.

Martins, C.C., de Araújo, A.P., 2016. First record of Dilaridae (Neuroptera) in the state of Pernambuco, Brazil. *Check List* 12, 1889. <https://doi.org/10.15560/12.3.1889>.

Martins, C.C., Machado, R.J.P., Oswald, J.D., Ribeiro, G.C., 2022. Extinct Neuroptera from Brazil (Insecta: Neuroptera, Megaloptera, Raphidioptera). *Revista Brasileira de Entomologia* 66 (special issue), e20220090. <https://doi.org/10.1590/1806-9665-RBENT-2022-0090>.

Martins-Neto, R.G., 1997. Neurópteros (Insecta, Planipennia) da Formação Santana (Cretáceo Inferior), Bacia do Araripe, nordeste do Brasil. X – Descrição de novos táxons (Chrysopidae, Babinskaiidae, Myrmeleontidae, Ascalaphidae e Psychopsidae). *Revista Universidade de Guarulhos. Série Ciências Exatas e Tecnológicas* 2 (4), 68–83.

Martins-Neto, R.G., Rodrigues, V.Z., 2009. New Neuroptera (Insecta, Osmyliidae and Mesochrysopidae) from the Santana Formation, Lower Cretaceous of northeast Brazil. *Gaea – Journal of Geosciences* 5, 15–20.

Metcalfe, I., 2017. Tectonic evolution of Sundaland. *Bulletin Geological Society of Malaysia* 63, 27–60.

Minter, L.R., 1986. The first record of Dilaridae (Neuroptera) from the Afro-tropical Region. *Journal of the Entomological Society of Southern Africa* 49, 87–94.

Monserrat, V.J., 1988. Revisión de los dilarídidos ibéricos (Neuropteroidea, Planipennia: Dilaridae). *EOS-Revista Espanola de Entomología* 64, 175–205.

Nakahara, W., 1963. A remarkable new dilarid from India (Neuroptera). *Kontyu* 31, 77–78.

Navás, L., 1909. Monografía de la familia de los Diláridos (Ins. Neur.). *Memorias de la Real Academia de Ciencias y Artes de Barcelona* 3 (7), 619–671.

Navás, L., 1933. De las cañas del Sr. Gadeau de Kerville en el Asia Menor. In: Berland, L., Jeannel, R. (Eds.), *Ve Congrès International d'Entomologie, Paris, 18–24 Juillet 1932, Vol. 2. Travaux. Secrétariat du Congrès, Paris*, pp. 221–225.

Ogizava, B., Brožek, J., Węgierek, P., 2025. New aphid taxa from Obeschchayushchiiy (north-eastern Russia) and their implications for the evolutionary stage of the group in the Late Cretaceous. *The European Zoological Journal* 92 (1), 1233–1247. <https://doi.org/10.1080/24750263.2025.2560397>.

Oswald, J.D., 1993a. Revision and cladistic analysis of the world genera of the family Hemerobiidae (Insecta: Neuroptera). *Journal of the New York Entomological Society* 101, 143–299.

Oswald, J.D., 1993b. Phylogeny, taxonomy, and biogeography of extant silky lacewings (Insecta: Neuroptera: Psychopsidae). *Memoirs of the American Entomological Society* 40 i–iii + 1–65.

Oswald, J.D., 1998. Rediscovery of *Polystoechotes gazullai* Navas (Neuroptera: Polystoechotidae). *Proceedings of the Entomological Society of Washington* 100, 389–394.

Panfilov, D.V., 1980. New representatives of lacewings (Neuroptera) from the Jurassic of Karatau. In: Dolin, V.G., Panfilov, D.V., Ponomarenko, A.G., Pritykina, L.N. (Eds.), *Fossil insects of the Mesozoic*. Naukova Dumka, Kiev, Ukraine, pp. 82–111 (In Russian).

Peng, Y.Y., Makarkin, V.N., Ren, D., 2016. Diverse new Middle Jurassic Osmylop-sychopidae (Neuroptera) from China shed light on the classification of psychopoids. *Journal of Systematic Palaeontology* 14, 261–295. <https://doi.org/10.1080/14772019.2015.1042080>.

Peng, Z.H., Chen, Y.T., Shi, C.F., Ren, D., Yang, Q., 2024a. Two new species of *Burmopsychops* (Insecta: Neuroptera) from Upper Cretaceous Myanmar amber. *Cretaceous Research* 154, 105751. <https://doi.org/10.1016/j.cretres.2023.105751>.

Peng, Z.H., Liu, S.T., Chen, Y.T., Shi, C.F., Ren, D., Yang, Q., 2024b. Two interesting new genera of kalligrammatids (Insecta: Neuroptera) from Upper Cretaceous Myanmar amber. *Palaeoentomology* 7, 422–434. <https://doi.org/10.11646/palaeoentomology.7.3.12>.

Penny, N.D., 1996. A remarkable new genus and species of Ithonidae from Honduras (Neuroptera). *Journal of the Kansas Entomological Society* 69, 81–86.

Penny, N.D., 2002. Family Dilaridae. In: Penny, N.D. (Ed.), *A Guide to the Lacewings (Neuroptera) of Costa Rica*. Proceedings of the California Academy of Sciences, (4) 53, pp. 236–237.

Poinar Jr., G.O., 2019. Burmese amber: evidence of Gondwanan origin and Cretaceous dispersion. *Historical Biology* 31, 1304–1309. <https://doi.org/10.1080/08912963.2018.1446531>.

Poinar, G.O., Chambers, K.L., 2005. *Palaeoanthella huangii* gen. and sp. nov., an Early Cretaceous flower (Angiospermae) in Burmese amber. *Sociedad Espanola Interdisciplinaria de Sida* 21, 2087–2092.

Poinar, G.O., Chambers, K.L., 2017. *Tropidogyne pentaptera* sp. nov., a new mid-Cretaceous fossil angiosperm flower in Burmese amber. *Palaeodiversity* 10, 135–140. <https://doi.org/10.18476/pale.v10.a10>.

Poinar, G.O., Chambers, K.L., 2020a. *Dasykothon leptomiscus* gen. et sp. nov., a fossil flower of possible lauralean affinity from Myanmar amber. *Journal of the Botanical Research Institute of Texas* 14, 65–71. <https://doi.org/10.17348/jbitr.v14.i1.897>.

Poinar, G.O., Chambers, K.L., 2020b. *Phantophlebia dicycla* gen. et sp. nov., a five-merous fossil flower in mid-Cretaceous Myanmar amber. *Journal of the Botanical Research Institute of Texas* 14, 71–80. <https://doi.org/10.17348/jbitr.v14.i1.898>.

Poinar, Jr., G.O., Chambers, K.L., Buckley, R., 2007a. *Eoepigynia burmensis* gen and sp. nov., an Early Cretaceous eudicot flower (Angiospermae) in Burmese amber. *Journal of the Botanical Research Institute of Texas* 1, 91–96.

Poinar, Jr., G.O., Chambers, K.L., Buckley, R., 2008. An Early Cretaceous angiosperm fossil of possible significance in rosid floral diversification. *Journal of the Botanical Research Institute of Texas* 2, 1183–1192.

Poinar, Jr., G.O., Chambers, K.L., Wunderlich, J., 2013. *Micropetasos*, a new genus of angiosperms from mid-Cretaceous Burmese amber. *Journal of the Botanical Research Institute of Texas* 7, 745–750.

Poinar, G.O., Lambert, J.B., Wu, Y., 2007b. Araucarian source of fossiliferous Burmese amber: spectroscopic and anatomical evidence. *Journal of the Botanical Research Institute of Texas* 1, 449–455.

Rambur, J.P., 1838. *Faune entomologique de l'Andalousie*, vol. 2. Arthus Bertrand, Paris, pp. 1–176.

Rasnitsyn, A.P., Ohm-Kühnle, C., 2018. Three new female *Aptenoperissus* from mid-Cretaceous Burmese amber (Hymenoptera, Stephanoidea, Aptenoperissidae): unexpected diversity of paradoxical wasps suggests insular features of source biome. *Cretaceous Research* 91, 168–175. <https://doi.org/10.1016/j.cretres.2018.06.004>.

Ren, D., Guo, Z.G., 1996. On the new fossil genera and species of Neuroptera (Insecta) from the Late Jurassic of northeast China. *Acta Zootaxonomica Sinica* 2, 461–479.

Ren, D., Makarkin, V.N., 2009. Ascalochrysidae – a new lacewing family from the Mesozoic of China (Insecta: Neuroptera: Chrysopoidea). *Cretaceous Research* 30, 1217–1222. <https://doi.org/10.1016/j.cretres.2009.06.004>.

Ren, D., Oswald, J., 2002. A new genus of kalligrammatid lacewings from the Middle Jurassic of China (Neuroptera: Kalligrammatidae). *Stuttgarter Beiträge zur Naturkunde (Geologie und Paläontologie)* 317, 1–8.

Riek, E.F., 1956. A re-examination of the mecopteroid and orthopteroid fossils (Insecta) from the Triassic beds at Denmark Hill, Queensland, with descriptions of further specimens. *Australian Journal of Zoology* 4, 98–110.

Riek, E.F., 1974. The Australian moth-lacewings (Neuroptera: Ithonidae). *Journal of the Australian Entomological Society* 13, 37–54.

Scotese, C.R., Vérard, C., Burgener, L., Elling, R.P., Kocsis, Á.T., 2024. Phanerozoic supplementary material to "The Cretaceous World: Plate Tectonics, Paleogeography, and Paleoclimate" from the PALEOMAP project (Version v24221). Zenodo. <https://doi.org/10.5281/zenodo.1065911>.

Shepard, F.D., 1967. The head capsule and cervix of adult Neuroptera (Insecta). A comparative morphological study (PhD thesis), Cambridge, Massachusetts, iv + 226 pp., 32 pls.

Shi, C., Wang, S., Cai, H.H., Zhang, H.R., Long, X.X., Tihelka, E., Song, W.C., Feng, Q., Jiang, R.X., Cai, C.Y., Lombard, N., Li, X., Yuan, J., Zhu, J.P., Yang, H.Y., Liu, X.F., Xiang, Q.P., Zhao, Z.T., Long, C.L., Schneider, H., Zhang, X.C., Peng, H., Li, D.Z., Fan, Y., Engel, M.S., Wang, Y.D., Spicer, R.A., 2022. Fire-prone Rhamnaceae with South African affinities in Cretaceous Myanmar amber. *Nature Plants* 8, 125–135. <https://doi.org/10.1038/s41477-021-01091-w>.

Shi, G.H., Grimaldi, D.A., Harlow, G.E., Wang, J., Wang, J., Yang, M.C., Lei, W.Y., Li, Q.L., Li, X.H., 2012. Age constraint on Burmese amber based on UePb dating of zircons. *Cretaceous Research* 37, 155–163. <https://doi.org/10.1016/j.cretres.2012.03.014>.

Smith, R.D.A., Ross, A.J., 2018. Amberground pholadid bivalve borings and inclusions in Burmese amber: implications for proximity of resin-producing forests to brackish waters, and the age of the amber. *Earth and Environmental Science Transactions of the Royal Society of Edinburgh* 107, 239–247. <https://doi.org/10.1017/S1755691017000287>.

Tauber, C.A., 2019. South American Nothochrysinae (Neuroptera, Chrysopidae): II. Redescription of *Leptochrysa priscia* Adams & Penny. *ZooKeys* 866, 19–38. <https://doi.org/10.3897/zookeys.866.35396>.

Tillyard, R.J., 1919. Studies in Australian Neuroptera. No. 8. Revision of the family Ithonidae, with descriptions of a new genus and two new species. *Proceedings of the Linnean Society of New South Wales* 44, 414–437.

Tjeder, B., 1960. Neuroptera-Planipennia. The Lace-wings of Southern Africa. 3. Family Psychopsidae. In: Hanström, B., Brinck, P., Rudebeck, G. (Eds.), *South African Animal Life. Results of the Lund University Expedition in 1950–1951*, Vol. 7, Almqvist & Wiksells Botktryck Ab, Uppsala, pp. 164–209.

Wang, Y.Q., Li, H.Y., Zhuo, D., Xu, C.P., Liu, X.Y., 2025. A new genus of beaded lacewings (Neuroptera, Berothidae) from the mid-Cretaceous Kachin amber, with implications on the evolution of mouthparts and genital sclerites. *Palaeoentomology* 8, 459–469. <https://doi.org/10.11646/palaeoentomology.8.4.13>.

Westerweel, J., Roperch, P., Licht, A., Dupont-Nivet, G., Win, Z., Poblete, F., Ruffet, G., Swe, H.H., Thi, M.K., Aung, D.W., 2019. Burma Terrane part of the Trans-Tethyan Arc during collision with India according to palaeomagnetic data. *Nature Geoscience* 12, 863–868. <https://doi.org/10.1038/s41561-019-0443-2>.

Westerweel, J., Roperch, P., Win, Z., Dupont-Nivet, G., 2025. Northward drift of the Burma Terrane with India during the Cenozoic and implications for the India–Asia collision. In: Dupont-Nivet, G., Jonell, T.N., Dommain, R., Clift, P.D. (Eds.), *Asian Geodynamics, Climate and Biodiversity*. Geological Society, London, Special Publications 549, pp. 11–54.

Xing, L.D., Stanley, E.L., Bai, M., Blackburn, D.C., 2018. The earliest direct evidence of frogs in wet tropical forests from Cretaceous Burmese amber. *Scientific Reports* 8, 8770. <https://doi.org/10.1038/s41598-018-26848-w>.

Yang, Q., Makarkin, V.N., Ren, D., 2011. Two interesting new genera of Kalligrammatidae (Neuroptera) from the Middle Jurassic of Daohugou, China. *Zootaxa* 2873, 60–68. <https://doi.org/10.11646/zootaxa.2873.1.5>.

Yang, Q., Makarkin, V.N., Winterton, S.L., Khramov, A.V., Ren, D., 2012. A remarkable new family of Jurassic insects (Neuroptera) with primitive wing venation and

its phylogenetic position in Neuroptera. PLoS One 7 (9), e44762. <https://doi.org/10.1371/journal.pone.0044762>.

Yang, Q., Wang, Y.J., Labandeira, C.C., Shih, C.K., Ren, D., 2014. Mesozoic lacewings from China provide phylogenetic insight into evolution of the Kalligrammatidae (Neuroptera). BMC Evolutionary Biology 14, 126. <https://doi.org/10.1186/1471-2148-14-126>.

Zhang, W., Liu, X.Y., Winterton, S.L., Aspöck, H., Aspöck, U., 2016. A review of the pleasing lacewing genus *Dilar* Rambur (Neuroptera, Dilaridae) from Southeast Asia. Zootaxa 4105, 124–144. <https://doi.org/10.11646/zootaxa.4105.2.2>.

Zimmermann, D., Randolph, S., Aspöck, U., 2019. From chewing to sucking via phylogeny – from sucking to chewing via ontogeny: mouthparts of Neuroptera. In: Krenn, H.W. (Ed.), insect mouthparts: form, function, development and performance. Zoological Monographs, vol. 5. Springer, Cham, Switzerland, pp. 361–385.