Description of a New Species of *Tokyosoma* Verhoeff, 1932 from Taiwan, with a Key to the Species of the Genus Occurring in Taiwan (Diplopoda, Chordeumatida, Diplomaragnidae)

Mikhaljova, E.V., S.I. Golovatch¹ and H.W. Chang^{2,*}

(Institute of Biology and Soil Science, Far Eastern Branch of the Russian Academy of Sciences, prospekt Stoletiya Vladivostoka 159, Vladivostok 690022, Russia

노래기강(Chordeumatida: Diplomaragnidae)의 *Tokyosoma* Verhoeff, 1932 신종 기재와 대만산 종 분류

미할로바 · 골로바치1 · 장수워2,*

(러시아과학원 극동연구소, '러시아과학원 생태진화문제연구소, '대만 국립중산대학교 생물학과)

ABSTRACT

Tokyosoma tortum sp. nov. is being described from Taiwan. It differs from congeners mainly by the subcircular coiled lateral coxal branch of the posterior gonopod, as well as by the peculiar, unciform process of male coxa 10. A key is given to all 11 species of *Tokyosoma* presently known to occur in Taiwan.

equipment.

Key words: Millipede, Tokyosoma, Taxonomy, New species, Key, Taiwan

INTRODUCTION

The diplomaragnid fauna of Taiwan has recently been reviewed, keyed and mapped, also shown to be dominated by species of the genus *Tokyosoma* Verhoeff, 1932 (Mikhaljova *et al.*, 2010). At present *Tokyosoma* is known to encompass 16 species confined to Japan (Honshu, Shikoku and Kyushu), Korea and Taiwan. However, it is Taiwan that supports the greatest number of congeners, all ten being restricted to midto high-montane habitats above 1000 m a.s.l.

Among the samples kept in the Taiwan Forestry Research Institute, Taipei (TFRI), one more new species of this genus has been located. The present contribution is devoted to its description, with a key given to all 11 species of *Tokyosoma* encountered in Taiwan.

DESCRIPTION

MATERIALS AND METHODS

The holotype has been returned to the TFRI collection. It

was collected in 70-75% ethanol. During the study, the gono-

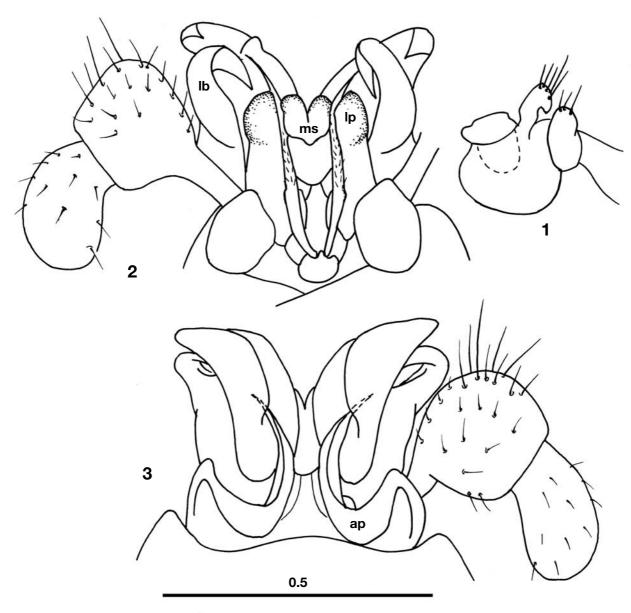
pods and some other parts were dissected and mounted in glycerin as temporary micropreparations. The specimen was studied

and illustrated using standard stereomicroscopic and drawing

Tokyosoma tortum sp. nov. (Figs 1-3)

Material examined. *Holotype ♂* (incomplete, with only head and 16 anterior body segments retained, partly somewhat flattened dorsoventrally), Taiwan, Ilan County, Jialuohu, Datong, near Jialuohu Lakes, 2250 m a.s.l., 4.VI.2003, leg. Y. M. Chen.

Diagnosis. Differs from congeners mainly by the subcircular coiled lateral coxal branch of the posterior gonopod, as well


Submitted September 15, 2011; Accepted November 12, 2011

* Corresponding author

E-mail) hwchang@mail.nsysu.edu.tw

¹Institute for Problems of Ecology and Evolution, Russian Academy of Sciences, Leninsky prospekt 33, Moscow 119071, Russia

²Department of Biological Sciences, National Sun Yat-Sen University, 70 Lien-Hai Road, Kaohsiung 804, Taiwan, ROC)

Figs. 1-3. *Tokyosoma tortum* sp. nov., male holotype. 1. coxa and trochanter 10, front view; 2. gonopods, caudal view; 3. gonopods, front view; ms-mesal sheath processes of posterior gonopod colpocoxites; lp-lateral sheath process of posterior gonopod colpocoxite; lb-lateral coxal branch of posterior gonopod; ap-anterior process of posterior gonopod angiocoxite. Scale in mm.

as the unciform process of male coxa 10.

Description. Male. Length of anterior body fragment ca 5 mm, width with paraterga 1.0 mm. Coloration in alcohol brown. Venter pale brown. Legs pale brown with marbled brown distal parts. Antennae brown. Ocellaria black.

Head covered with relatively long and sparse setae. Each eye patch composed of at least 34 ocelli. Collum semi-circular. Beginning from somite 4, paraterga normally developed. Metazonital macrochaetae long, pointed apically, all three subequal in length.

Leg pairs 3-7 somewhat enlarged. Pregonopodal legs without

tarsal papillae. Claws of pregonopodal legs broken off. Postgonopodal legs (including leg pairs 10 and 11) without tarsal papillae. Claw of leg pairs 10 and 11 at base with one small additional claw dorsally and a long setoid filament ventrally. Claw of midbody legs at base with one small additional claw dorsally and a long setoid filament ventrally.

Legs 10 and 11 with coxal glands. Coxa 10 with an unciform process curved anteriad, this process carrying rather long setae at curvature (Fig. 1). Trochanter 10 with a small, low, ventral outgrowth setose apically. Coxa 11 without modifications. Trochanter 11 with a very low ventral prominence supporting 1-2

setae.

Gonopods. Anterior gonopod telopodite somewhat flattened, 1-segmented (under the microscope, the anterior gonopod telopodite can look 2-segmented, because its base is attached to the adjacent mesal portion of the posterior gonopod, so that the attachment place looks like a border between segments), flagelliform, its distal half being beset with minute cuticular spinules and positioned inside a sheath (Fig. 2).

Posterior gonopod colpocoxites fused medially, curved posteriad distally. Mesal sheath processes of posterior gonopod colpocoxites fused medially into a single cup-shaped structure (ms). Lateral sheath process (lp) a plate placed horizontally and curved caudad. As a result, ms and two processes lp combined forming another cup-shaped structure which is larger than ms. Postrior gonopod angiocoxite with a globule, but without process in posterior view.

Posterior gonopod coxal part with a long, lateral, flat branch (lb) subcircular coiled forward. Basal part of this branch fused to both colpocoxite and anterior angicoxite.

Angicoxite depressed centrally in anterior view (Fig. 3), supplied with a long flat process (ap); distal portion of this process being hidden under an anteromesal fold of colpocoxite. Posterior gonopod telopodite 2-segmented, femur normal.

Female unknown.

Name. The specific epithet refers to the nearly circular lateral coxal branch of the posterior gonopod.

Remarks. The new species is also high-montane, being obviously confined to the central, high-mountainous part of the island. This fully agrees with the distribution pattern demonstrated by the remaining Diplomaragnidae known from Taiwan (Mikhaljova *et al.*, 2010). This family is basically Palaearctic, ranging from slightly west of the Urals in the west, throughout Siberia and northern Mongolia, to the Pacific coast of Russia, to the Sakhalin and Kurile islands, to peninsular Korea, as well as to the main islands of Japan and to Taiwan in the east and southeast (Mikhaljova, 2004). Such a strikingly diverse fauna of *Tokyosoma* of Taiwan, coupled with the mid- to high-montane habits and prevailing allopatry of its constituent species, only emphasizes the importance of Palaearctic elements in the millipede fauna of the island.

Key to the *Tokyosoma* species occurring in Taiwan

1(2) Posterior gonopod colpocoxite with a lateral horn-shaped
process
2(1) Posterior gonopod colpocoxite without lateral horn-
shaped process 3
3(6) Lateral coxal branch of posterior gonopod with neither

any processes nor blades 4
4(5) Lateral coxal branch of posterior gonopod coiled sub-
circular T. tortum sp. nov.
5(4) Lateral coxal branch of posterior gonopod straight, lying
parallel to colpocoxite and sharply curved only in apical
part T. australe
6(3) Lateral coxal branch of posterior gonopod with some
processes and blades 7
8(15) Posterior gonopod colpocoxite with a distal outgrowth $\cdots9$
9(10) Distal outgrowth of posterior gonopod colpocoxite
short T. breviprocessum
10(9) Distal outgrowth of posterior gonopod colpocoxite long
11(12) Lateral coxal branch of posterior gonopod bifurcated
into long and slender branches T. bifurcatum
12(11) Lateral coxal branch of posterior gonopod not bifurcated
into long and slender branches 13
13(14) Lateral coxal branch of posterior gonopod with a denti-
form process subapically and with an unciform process
laterally T. fanfan
14(13) Lateral coxal branch of posterior gonopod without any
processes subapically, but with a pointed, spiniform
process near midway T. spinifer
15(8) Posterior gonopod colpocoxite without distal outgrowth
16(17) Lateral coxal branch of posterior gonopod with a spiraled
distal portion carrying a lateral serrate blade T. serratum
17(16) Lateral coxal branch of posterior gonopod divided into
three processes distally T. cornutum
18(19) Middle portion of posterior gonopod lateral coxal
branch microtuberculate laterally, distal portion of the
branch blade-shaped T. lobatum
19(18) Middle portion of posterior gonopod lateral coxal branch
with a lateral, thin, serrate blade, distal portion of the
branch beak-shaped ····· T. taroko

any processes nor blades 4

ACKNOWLEDGEMENTS

We are most grateful to the National Science Council (NSC), Taiwan, Republic of China and to the Russian Academy of Sciences, Moscow, Russian Federation, for the support rendered to the Taiwanese and Russian teams, headed by H.W. Chang and S. I. Golovatch, respectively, to actively collaborate in our joint ecofaunistic studies on the Myriapoda of Taiwan (NSC grant No. 98-2923-B-110-002-MY2, Russian Foundation for Fundamental Investigations, grant No. 09-04-92005-HHC_a).

J. T. Chao (TFRI, Taipei, Taiwan) kindly provided material under his care on loan. We are deeply obliged to the collector whose sample has been treated in this paper. Mrs G.A. Sinelnikova (IBSS, Vladivostok, Russia) amiably inked the line drawings.

REFERENCES

Mikhaljova, E.V. 2004. The millipedes (Diplopoda) of the Asian part of Russia. Pensoft Publishing House, Sofia-Moscow, 292 pp.

Mikhaljova, E.V., S.I. Golovatch and H.W. Chang. 2010. The millipede family Diplomaragnidae in Taiwan, with descriptions of nine new species (Diplopoda, Chordeumatida). *Zootaxa* **2615**: 23-46.