ISBN 978-5-8044-1648-6

HELD BY:
For Eastern Branch of Russian Academy of Sciences (FEB RAS),
National Scientific Center of Marine Biology, NSCMB FEB RAS,
Federal Scientific Center of Biodiversity of East-Asia Land Biota FEB RAS,
For Eastern Federal University,
Vladivostok Public Foundation for Development of Genetics

SPONSORS:
Russian Foundation for Basic Research, Federal Agency of Scientific Organizations,
LabInstruments Company, AlbioGen Company,
Khimexpert Agency

Editors: Yuri Ph. Kartavtsev, Oleg N. Katugin


ОРГАНИЗАТОРЫ:
Дальневосточное отделение РАН (ДВО РАН),
Национальный научный центр морской биологии ДВО РАН,
ФНП биоразнообразия наземной биоты восточной Азии ДВО РАН,
Дальневосточный федеральный университет,
Владивостокский общественный фонд развития генетики

ФИНАНСОВАЯ ПОДДЕРЖКА:
Российский фонд фундаментальных исследований,
Федеральное агентство научных организаций,
ООО «ЛабИнструментс», ООО «АльбиоGen»,
ООО «Химэксперт»

Ответственные редакторы: Ю.Ф. Картавцев, О.Н. Катугин

ISBN 978-5-8044-1648-6

© Национальный научный центр морской биологии ДВО РАН, 2017
© Владивостокский общественный фонд развития генетики, 2017
GENETIC DIFFERENTIATION OF MAINLAND AND ISLAND POPULATIONS IN EASTERN LINEAGE OF THE STRIPED FIELD MOUSE (Apodemus agrarius): A STUDY OF 5 MICROSATELLITE LOCI

1Frisman L.V., 2Sheremetyeva I.N., 3Kartavtseva I.V., 3Pavlenko M.V.

1Institute for Complex Analysis of Regional Problems FEB RAS, Sholom-Aleikhem Str. no. 4, Birobidzhan, Russia;
2Federal Scientific Center of the East Asia Terrestrial Biodiversity FEB RAS, Vladivostok, 690022, Russia

The striped field mouse inhabits a wide geographical area from the central Europe to the Pacific coast of Asia including nearest islands. The species range is subdivided into two allopatric parts (European-Siberian- Kazakh versus Russian Far Eastern-Chinese-Korean) with disjunction in Transbaikalia. Using a fragment analysis of 5 microsatellite loci (GTTS9S, GATAE10A, CAA2A, GTTF9A and GSAD17), it was shown that allelic diversity in the western lineage is lower than in the eastern one (Frisman et al. 2016). Perhaps, for A. agrarius, this was due to much longer period of living in the Eastern Palearctic than in Siberia and Europe. It was found that the affinity of continental populations within each lineage is higher, and genetic differentiation between these lineages is larger (Frisman et al., 2016).

The aim of this study was to compare differentiation of mainland and island populations within the eastern lineage. A total of 205 animals were caught in five continental localities as well as on two islands in the Peter the Great Bay (Sea of Japan). To perform the fragment analysis we used the same microsatellite markers as before, GTTS9S locus was polymorphic in all the samples except for one population in the southern Primorye (Khasan district) where the second allele was found. The number of alleles in continental populations were higher than in populations on the islands. The smallest number of alleles was found in population on the Bolshoi Pelis Island.

The highest genetic similarity was revealed within both groups of populations "Middle Priamurye" and "Primorye" (DNeiNei <0.06). There was somewhat lower similarity between populations in these groups (DNeiNei 0.074-0.092). Island populations presented higher differentiation both among themselves and when compared to continental ones (DNeiNei 0.109-0.282). It suggests the importance of genetic drift in formation of their genetic structure.

This work was supported by grant of PFCI "Far East" №15-1-6-049 as well as RFBR grant № 15-04-03871.