Genetic differentiation of black and grey colored forms of the earthworm *Drawida ghilarovi* Gates, 1969 (Moniligastridae, Oligochaeta) on Russian Far East

Dmitry M. Atopkin a, b, *, Gennady N. Ganin c

a Department of Cell Biology and Genetics, Far Eastern Federal University, 690051 Vladivostok, Russia
b Institute of Biology and Soil Science, Far Eastern Branch of Russian Academy of Sciences, 690022 Vladivostok, Russia
c Institute Water and Ecology Problems, Far Eastern Branch of Russian Academy of Sciences, 680000 Khabarovsk, Russia

A R T I C L E I N F O

Article history:
Received 18 June 2014
Received in revised form 12 November 2014
Accepted 17 December 2014
Available online 18 December 2014

Keywords:
Drawida
Oligochaeta
Mitochondrial DNA
Earthworm
Russian Far East

A B S T R A C T

The endemic earthworm *Drawida ghilarovi* Gates 1969, which is found in the Primorye and the south of the Khabarovsk Krai, is represented in the forest by a live form of aneciques (burrowing) and in the wetland by soil-litter (epigeic) worms. These moniligastrida species noticeably differ both in pigmentation (grey and black forms, respectively) and in ecology specifics. Molecular analysis of these specimens has been performed using partial sequences of the mitochondrial COI and 16S genes. The genetic p-distances between the two colored forms of *D. ghilarovi* and within the black form of this species have been estimated and the phylogenetic relationships of these different forms reconstructed using the maximum parsimony and maximum likelihood algorithms. Genetic differentiation within the genus *Drawida* ranged from 16.3 to 23% when using the COI gene sequence data. Genetic differences between the colored forms of *D. ghilarovi* were 14.8–16.9%, suggesting species level differentiation between these forms. Phylogenetic relationships, based on the combined molecular data, showed obvious differentiation between the grey and black forms of *D. ghilarovi*. In addition, there was also considerable differentiation between different samples of the *D. ghilarovi* black forms, collected from different geographical locations.

© 2014 Elsevier Masson SAS. All rights reserved.

1. Introduction

The earthworm *Drawida ghilarovi* Gates, 1969 (Moniligastridae, Oligochaeta) is an endemic species of the south of the Russian Far East. These exclusive specimens of tropical genus are included in the Red Book of the Russian Federation (2001) [1] and the Khabarovsk region (2008) [2]. The earthworm specimens were first found at the territory of the Far Eastern forest reserves [3], and were later described by Gates (1969) as a new species [4]. Little biological or ecology data are available on this species [5–10]. Members of the family Moniligastridae occupied South-Western Asia after the collision of the Indian and Asian geological plates during the Tertiary period (i.e., about 70 million years) [11]. The *Drawida* worms are the most broad among other genera of earthworms and includes the Russian Primorye region, the territories of China, the Korean peninsula, Japan and the Indostan peninsula [4]. In a report by Blakemore (2003), six species of the genus *Drawida* were found to inhabit north-eastern China, four species on the Korean peninsula, and eight species in Japan [12]. Kurchaeva (1977) was the first to identify *Drawida* earthworms in the south of the Russian Far East [13]. Within this territory a color variation of among different specimens was found for *D. ghilarovi*, which was dependent on their environments [4,5,10,14,15]. There are three forms of earthworms, which are differentiated by the morphology and the ecology specifics: endogenic, burrowing and epigeic forms [17]. The burrowing forms live underground in the coprolite capsule. These worms migrate vertically from the capsule upwards towards the decomposed tree waste. Burrowing worms are better adapted to the soil temperature extremes, but their natural habitat is limited by the soil drainage. Epigeic worms live on the soil surface or under the grass waste and selectively feed on plant residues or rootlets within the humus. Epigeic species are hydrophilic and better adapted to flooding. Burrowing and epigeic species are considered

*Corresponding author. Institute of Biology and Soil Science, Far Eastern Branch of Russian Academy of Sciences, 690022 Vladivostok, Russia.
E-mail address: atop82@gmail.com (D.M. Atopkin).
as ecologically equal groups because of the great differences of extreme dampness conditions. Burrowing species are able to inhabit the subtropical climatic environments and the epigeic species are found in the northern swampy soils [18]. Each of these species differ in their body size and color, which are either expressed more on the preclitellar part of the body (burrowing species) or evenly distributed throughout the body (epigeic species). Based on the morphological and ecological data, certain ecological forms of *D. ghilarovi* could be recognize as different species [15,16]. Moreover, there is currently no data on the interbreeding abilities of the various color morphs. For this reason, the aim of our study was to clarify the taxonomical status of the different ecological forms of *D. ghilarovi* using molecular tools. The lack of molecular studies addressing *Drawida* species taxonomy using mitochondrial nucleotide sequences [19] allowed us to perform a detailed comparative analysis, using molecular data for the different specimens.

2. Materials and methods

Fifteen specimens of the *D. ghilarovi* were collected from the different locations of the Primorye region and the south of Khabarovsk Krai (Table 1, Fig. 1). Specimens were identified morphologically (Ganin et al., 2014) and then fixed in the 96% ethanol for the genetic analysis. Total genomic DNA extracted using the Invitrogen Genomic DNA extraction kit by the manufacturer protocol. Amplification of the COI gene fragment was performed using the polymerase chain reaction with primers LCO1490 (5’-GGT CAA CAA ATC ATA AAG ATA TT 3’) and HCO2198 (5’-TAA ACT TCA GGG TGA CCA AAA AA 3’), described earlier by Folmer et al. (1994) [20]. Amplification of the 16S rRNA gene fragment performed using primers 16S ar (5’-CGG CTC TTT ATC AAA AAC AT3’) and 16S br (5’-CGC GTC TGA FCT CAG ATC ACG T3’) [21]. PCR contamination control performed by including the negative control alongside the positive control, using both primers. PCR products directly sequenced using the Big Dye Terminator v3.1 Cycle Sequencing kit (as instructed by manufacturer) using primers for amplification, described above. Reading of the sequence products performed with the ABI 3130xl genetic analyzer at the Department of Cell Biology and Genetics, FEFU. The resulting sequences submitted to the European Nucleotide Archive (ENA), accession numbers presented in Table 1.

Nucleotide sequences initially assembled with the SeqScape v2.6 software and aligned using the MEGA 5.22 alignment engine with default options [22]. Regions that aligned ambiguously, excluded from the analysis. Calculation of a number of variable and parsimony-informative sites, and of genetic p-distances performed using the MEGA 5.22. Genetic divergence estimated by calculation. Saturation analysis performed by calculation of the rate of number of variable sites on the 3rd coon position and the p-distances. Phylogenetic relationships analyzed with the maximum parsimony and the maximum likelihood algorithm using the MEGA 5.20 software. Resulting trees were rooted with species of the genus *Eisenia* (family Lumbricidae), which were used as outgroup taxa. Phylogenetic relationships significance estimated using the bootstrap analysis with 1000 replications [23].

Phylogenetic relationships of the *D. ghilarovi* inferred from our data and the nucleotide sequences of mitochondrial COI and 16S genes of other species of the genus *Drawida* from the NCBI GenBank database (Table 1).

3. Results

A total of 581 and 457–460 alignable characters were available for the analysis of the COI and 16S rDNA mitochondrial gene datasets of *D. ghilarovi*, respectively. Of these, 446 (76.8%) and 373

Table 1

<table>
<thead>
<tr>
<th>No.</th>
<th>Species (form)</th>
<th>n Location (Abb.)</th>
<th>Acc. Number</th>
<th>COI 16S</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>D. ghilarovi (black)</td>
<td>3 Wetland, Nanaian region, Khabarovsk Krai (Nch)</td>
<td>HG970197 HG970212</td>
<td>HG970197 HG970212</td>
</tr>
<tr>
<td>2</td>
<td>D. ghilarovi (black)</td>
<td>1 Wetland, Anyui Park, Khabarovsk Krai (Ach)</td>
<td>HG970203 HG970218</td>
<td>HG970203 HG970218</td>
</tr>
<tr>
<td>3</td>
<td>D. ghilarovi (black)</td>
<td>3 Wetland, Bastak Reserve, Jewish Autonomous Region (Bch)</td>
<td>HG970191 HG970206</td>
<td>HG970191 HG970206</td>
</tr>
<tr>
<td>4</td>
<td>D. ghilarovi (black)</td>
<td>3 Wetland, Chirki River, Khabarovsk Krai (Chch)</td>
<td>HG970194 HG970209</td>
<td>HG970194 HG970209</td>
</tr>
<tr>
<td>5</td>
<td>D. ghilarovi (black)</td>
<td>3 Wetland, Razdoľnaja River, Primorje (Ps)</td>
<td>HG970200 HG970215</td>
<td>HG970200 HG970215</td>
</tr>
<tr>
<td>6</td>
<td>D. ghilarovi (grey)</td>
<td>1 Forest, Usuriijskij Reserve, Promorje (Uz)</td>
<td>HG970205 HG970220</td>
<td>HG970205 HG970220</td>
</tr>
<tr>
<td>7</td>
<td>D. ghilarovi (grey)</td>
<td>1 Forest, Kedrovaja Pad’ Reserve, Promorje (Ps)</td>
<td>HG970204 HG970219</td>
<td>HG970204 HG970219</td>
</tr>
<tr>
<td>8</td>
<td>D. bulata</td>
<td>1 Kumar et al., 2011</td>
<td>JN887894 No data</td>
<td>JN887894 No data</td>
</tr>
<tr>
<td>9</td>
<td>D. gracilis</td>
<td>2 Kumar et al., 2011</td>
<td>JN887887 JN887899</td>
<td>JN887887 JN887899</td>
</tr>
<tr>
<td>10</td>
<td>D. hattamimizu</td>
<td>2 Minamiya et al., 2010</td>
<td>AB543206 AB543227</td>
<td>AB543206 AB543227</td>
</tr>
<tr>
<td>11</td>
<td>D. japonica</td>
<td>4 Chang et al., 2009</td>
<td>EF077597 EF077600</td>
<td>EF077597 EF077600</td>
</tr>
</tbody>
</table>

Fig. 1. Different earthworm morphs of *Drawida ghilarovi* Gates, 1969 (Oligochaeta: Moniligastridae) in the south of the Russian Far East. 1 — black, II — brownish, III — greenish-blue, bluish-grey, grey Drawida, IV — only red Lumbricidae earthworms. 1 — Wetland, Nanaian region, Khabarovsk Krai (Nch); 2 — Wetland, Anyui Park, Khabarovsk Krai (Ach); 3 — Wetland, Bastak Reserve, Jewish Autonomous Region (Bch); 4 — Wetland, Chirki river, Khabarovsk Krai (Chch); 5 — Wetland, Razdoľnaja river, Primorje (Ps); 6 — Forest, Usuriijskij Reserve, Promorje (Uz); 7 — Forest, Kedrovaja Pad’ Reserve, Promorje (Ps). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
(81.1–81.6%) were invariant and 79 (13.6%) and 64 (13.9–14%) were parsimony informative, for COI and 16S rRNA respectively. Analysis of the *D. ghilarovi* specimens from seven distinct samples revealed obvious genetic differentiation between the two ecological forms by both COI and 16S mitochondrial gene sequences. It is known that mitochondrial genes, such as COI gene or cytochrome B gene are saturated by nucleotide substitutions on the third codon position. This feature impeded to perform an adequate estimation of genetic variation. In this case the third codon position forcibly excluded from the analysis. We performed saturation analysis for COI gene sequence data. Results showed that saturation on the third codon position appear on 13% of genetic differentiation (Fig. 2a). Thus we excluded the third codon position to perform genetic analysis of the *Drahwa* species and different morphological forms of *D. ghilarovi*. Nevertheless, genetic p-distances for local population of *D. ghilarovi* were calculated with the third codon position, because there is no saturation on this level of differentiation (Fig. 2b). Thus we were able to make taxonomical conclusions based on comparative analysis of genetic p-distance mean values estimated for different colored forms of the *D. ghilarovi* and different species of the genus *Drawida*.

The genetic differentiation between the black and grey colored forms was 3.7% and 12.6% by COI and 16S rRNA gene sequence data, respectively (Table 2). There is little data available on the 16S rRNA gene sequences of *Drawida* species, so that the interspecific genetic differentiation values were calculated using the COI gene sequences data only. Interspecific genetic differentiation values ranged from 4.64% [*Drawida bullata/D. gracilis*] to 6.96% [*Drawida gracilis/D. hattamimizu*] (Table 2). Species *D. ghilarovi* was genetically closer to *D. j. japonica* (5.39%).

There was also genetic variation between the geographically distant samples of the *D. ghilarovi* epigeic form (Table 3, Fig. 1).

<table>
<thead>
<tr>
<th>Table 2</th>
<th>Genetic differentiation (%) between different species of the genus Drawida by COI gene partial sequences data, calculated with exclusion of the third codon position.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>D. ghilarovi black</td>
</tr>
<tr>
<td>2</td>
<td>D. ghilarovi grey</td>
</tr>
<tr>
<td>3</td>
<td>D. bullata</td>
</tr>
<tr>
<td>4</td>
<td>D. gracilis</td>
</tr>
<tr>
<td>5</td>
<td>D. hattamimizu</td>
</tr>
<tr>
<td>6</td>
<td>D. j. japonica</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 3</th>
<th>Genetic differentiation (%) between samples of D. ghilarovi by COI gene (below diagonal) and 16S gene (above diagonal) sequences data. B – black colored form, G – grey colored form.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Nch (B)</td>
</tr>
<tr>
<td>2</td>
<td>Ach (B)</td>
</tr>
<tr>
<td>3</td>
<td>Bch (B)</td>
</tr>
<tr>
<td>4</td>
<td>Chch (B)</td>
</tr>
<tr>
<td>5</td>
<td>Pch (B)</td>
</tr>
<tr>
<td>6</td>
<td>Uz (G)</td>
</tr>
<tr>
<td>7</td>
<td>Ps (G)</td>
</tr>
</tbody>
</table>

Genetic differentiation between samples ranged from 3.3% (Nch/Bch) to 10.7% (Ach/Chch) by COI gene sequences data and from 1.3% (Nch/Ach) to 4.9% (Bch/Chch) by 16S rRNA gene sequences data. The sample from Chch was more genetically distant in comparison with the other specimens. Moreover, the 16S rRNA gene sequences of the Chch specimens was characterized by the highest fragment length (473 bp) due to insertion of the nucleotide triplet, as compared with specimens from other locations. The Nch and Bch samples were genetically closer to each other using the COI gene sequence data. Whereas Nch was closer to Ach when using the 16S rRNA sequence data. For this reason, we performed the analysis of the molecular variation of *D. ghilarovi* specimens using the combined sequence data. The results of this combined analysis showed the same result as the COI sequence data analysis, indicating that the highest genetic identity existed between the Bch and Nch samples (2.8%). The genetic differentiation between specimens of the burrowing form (samples Ps and Uz) was 2.07 and 4.3% by the COI gene and 16S rRNA gene sequences, respectively.

Analysis of the phylogenetic relationships of *D. ghilarovi* with other species from this genus were made using the partial sequencing of the mtDNA COI gene (Fig. 3), together with species data found shown in the international GeneBank database. The *D. ghilarovi* specimens were closely related to the Chinese *Drahwa japonica japonica* (GeneBank data) that correspond to genetic p-distances data. Species *D. hattamimizu* included into the Red Book of Japan (2007) [24] was related to the *D. ghilarovi/D. j. japonica* cluster, whereas *D. bullata* and *D. gracilis* formed distinct branches. The phylogenetic analysis of the *D. ghilarovi* specimens using the
combined COI gene and 16S rRNA sequence data showed obvious differentiation between the black and grey colored forms (Fig. 4). The phylogenetic relationships of the black colored specimens strongly corresponded with their geographical distribution. Each geographical sample formed a distinct cluster with high bootstrap support. Specimens from Nch and Bch were closely related to each other, whereas samples from Pch, Chch and Ach formed distinct clusters. The specimens from Ach were closely related to the Bch/Nch cluster.

4. Discussion

Our molecular data, the first reported for this species, reveal a high genetic differentiation (p-distances) between the black and grey colored forms (up to 16.5–16.6% by the COI sequence data), as well as the various phylogenetic relationships between the studied forms. The p-distance values between the black and grey colored earthworms are close to the genetic differentiation of D. ghilarovi and D. hattamimizu (16.6%). Moreover, these results corresponded with the molecular differentiation of the Chinese D. j. japonica and the Japanese D. cf. japonica (17.13%), reported by Blakemore et al. (2010) [19]. These authors concluded that the mutual con-specificity of these two specimens may be questioned. However, the Chinese D. japonica is probably a misidentification as its DNA sequence differs from the Japanese specimens reported in Blakemore et al. (2010) [19]. Moreover, molecular analysis of these species was performed including the third codon position that could provide an adequate estimation of genetic differentiation. Nevertheless, our molecular data suggest the necessity to perform a taxonomical revision for the different forms of D. ghilarovi because molecular differentiation of these worms is relatively high. The grey worm is represented in the forest by an anecic (burrowing) form, while the black worm is found in the wetland and is a soil-litter form and the forest grey form. These two forms of D. ghilarovi differ from each other as much as the epigamic. ghilarovi differs from D. hattamimizu from Honshu Island. The molecular data therefore suggest the necessity to perform a taxonomical revision for the black and grey colored forms of D. ghilarovi. The phylogenetic relationships of the black colored specimens were strongly associated with their geographical distribution, which is possibly associated with the shape of the Amur River basin in the Late Neogene.

5. Conclusion

The earthworm D. ghilarovi, belonging to the large Indo-oriental family Monlilagastridae Claus 1880, is the endemic species of the south of the Russian Far East. The phylogenetic analysis of this specimen by combined COI gene and 16S rRNA gene sequence data showed obvious differentiation between the meadow-swamp black form and the forest grey form. These two forms of D. ghilarovi differ from each other as much as the epigamic. ghilarovi differs from D. hattamimizu from Honshu Island. The molecular data therefore suggest the necessity to perform a taxonomical revision for the black and grey colored forms of D. ghilarovi. The phylogenetic relationships of the black colored specimens were strongly associated with their geographical distribution, which is possibly associated with the shape of the Amur River basin in the Late Neogene.

![Fig. 4. Phylogenetic tree of the species D. ghilarovi from different locations based on COI gene partial sequences. Nodal labels indicate bootstrap statistics, calculated for the MP/ML algorithms. Branch length measured by amount of substitutions.](image-url)
Acknowledgments

Partial funding support for this research by grant № 12-04-00221-a.

References