Proceedings of the Japan-Russia cooperation symposium on the conservation of the ecosystem in Okhotsk
5. ロシア極東のコウモリの分布

チウノフ M. P. （ロシア科学アカデミー土壤生物学研究所）

5-1 ロシア極東地域におけるコウモリ相研究の概要

コウモリ類は、ロシアの哺乳類動物相の中でも最も研究が進んでいない分類群のひとつです。また、東アジアのコウモリの移動や分布についての研究は遅っています。理由としては、調査が進んでいないことがあげられます。コウモリの調査がしにくい、または研究者が少ないことか、また、調査が遅れていることが考えられます。ロシア極東における環境が近年急速に変化してきていることを考慮すると、種ごとの個体群の状態をさらに研究し、それを保護するための総合的なデータを入手し、各地域の種ごとの研究の程度を知ることが不可欠であります。

極東のコウモリ類について、最初のデータは19世紀後半のL. Шренк, Г. Радде, А. Мялевodonфラの採集によるものです。1914年に出版された「ロシア帝国の哺乳類検索図鑑」（Сатунин, 1914）では、極東の生息地には5種のコウモリ類が生息しているとしました。一方、Огонев（1928）は、極東ロシアで13種確認しています。旧ソビエト連邦のコウモリの研究では、Куликов（1950）のモノグラフが大きな意義をもっていて、そこで極東のコウモリ類の分布と生態についていくつかのことが報告されました。1960年代中頃に、沿海州南部での翼手類の越冬について簡略なデータが得られました（Охотина и Бромлей, 1970）。また、同時にロシア極東南部でユビナガコウモリ属（Miniopterus）の生息が確認され（Велев, 1968；Коноплов, 1970）、極東のコウモリ類は15種となりました。このように、私がコウモリ類の調査を始める前までに、極東のコウモリ類相については概要が示されていましたが、それらの多くのデータは沿海地方の最南端のもののみで、それ以外の地域についての情報は偶然採集された個体などによる古い記録が多く、そのほとんどが個体をずつ発見された物などで、個体数や生態についての情報はほとんどありませんでした。このような事情は20世紀の末から1995年の定点調査と採集調査およびそれ以前の文献調査によって、まず初めに1997年の私の著書「極東の翼手類」（Titov, 1997）のなかで極東のコウモリ類の分布図を作成し分布の分析をおこないました。その次に種ごとの相対的数、遭遇密度、性別および年齢構成を調べました。このときの結果の一部を図VI-5-1として示しました。

その後、さらに新種が発見され、種について生態的な新見出しがある、または分布境界線が訂正されたなど、近年明らかになってきたのは、極東部のコウモリ相はかなり独特であるということでしょうか。かつて旧北区に広く分布していたと考えられていたコウモリの多くが、西の境界線はアルタイ地域またはバイカル地域までしかおよばないことが明らかになってきました。最近のデータに基づけば、ロシア極東部では18種のコウモリ類が確認されています（表VI-5-1）。

このうち3種（Myotis brandti, Vespertilio murinus, Amblyotus nilssonii）だけが旧北区全体に分布していて、これらの種の分布図を図VI-5-2として示しました。

そのほかの種は中国あるいは日本付近に分布しています。ロシア極東部は、これらの種の分
布域の北限に位置しており、その観点からも多くの種が保護されている状況にあります。1997年の著書のデータにそれ以降明らかになった分布情報を加え、種ごとに作成した分布図を図VI-5-3として示しました。

図VI-5-1 春から夏にかけて採取された個体数によるロシア極東部周辺の各地域におけるコウモリ類の種ごとの相対的個体数（%）。
Figure VI-5-1 Relative abundance (in %) of bats in different regions of the Far East based on the spring – summer collection material.
n = total number of specimens registered in different regions.
I: The south of Primorye from 44°N, II: Primorye and Khabarovsk Territories from 44°N to 49°N, III: Khabarovsk Territory to the north of 49°N, IV: Amur Region, V: Sakhalin, VI: Kunashiri Island
Table VI-5-1 Bats of the Russian Far East.

BATS OF THE RUSSIAN FAR EAST

- *Myotis petax*
- *Myotis macrodactylus*
- *Myotis bombinus*
- *Myotis gracilis*
- *Myotis brandti*
- *Myotis ikonnikovi*
- *Myotis frater*
- *Plecotus ognevi*
- *Plecotus sacrimontis*
- *Barbastella darjelingensis*
- *Pipistrellus abramus*
- *Hypsugo alashanicus*
- *Amblyotus nilssonii*
- *Vespertilio murinus*
- *Vespertilio sinensis*
- *Murina ussuriensis*
- *Murina hilgendorfi*
- *Miniopterus fuliginosus*

Species with Palaearctic type of area

- *Myotis brandti*
- *Vespertilio murinus*
- *Amblyotus nilssonii*

Figure VI-5-2 The distribution map of the Palaearctic type species.
Figure VI-5-3 The records of Far East Russian bats based on the survey.

Open circles or triangles - winter records; solid circles or triangles - summer records.

A - Amblyotus nilssonii; B - Hypsugo alaskanus; C - Vespertilio murinus; D - Vespertilio sinensis; E - Myotis bombinus; F - Myotis ikonnikovi; G - Myotis petax, circles - M. petax ussuriensis, triangles - M. petax foukashkini; H - Myotis frater; I - Myotis gracilis and Myotis brandti, circles - M. gracilis, triangles - M. brandti; J - Myotis macrodactylus, circles - M. macrodactylus continentalis, solid triangles - M. macrodactylus insularis; K - Plecotus ognevi and Plecotus sacrimontis, circles - P. ognevi winter records, triangles - P. sacrimontis; L - Pipistrellus abramus, Miniopterus fuliginosus and Barbastella darjeelingensis, circles - Pipistrellus abramus, open triangles - M. fuliginosusii (summer and winter records), solid triangles - Barbastella darjeelingensis (summer records); M - Murina hilgendorfi; N - Murina ussuriensis.
5-2 コウモリ類研究における分類

多くの場合、特に野生動物保護に関わっている者に重要である。二つのグループが、亜種なのか、または形態学的に異なった独立種なのかをはっきりと区別することがあります。これまでのコウモリ類の分類は、主に歯と顎骨の外部形態とサイズ、その構造の特徴に基づいて行われてきました。

極楽におけるコウモリ類の分類については、分類学者の間に意見の相違が見られることから、いくつかの分類単位の構成要素と独立性の根拠となるクライテリアを示することが不可欠であると考えました。そこで私は生殖器構造の特徴が系統分類学的に大変重要であるという指標があることに注目しました。しかしながら、コウモリ類の分類で多く用いられているのは陰茎骨の形態（Thomas 1915, 1928; Topal 1968; Lanza 1969; Strzelkow 1986; Strelkov 1989a, 1989b; Hill and Harrison 1987）であります。

一方で陰茎骨の形態は地理的な変異が認められ不安定な形態であるために系統分類学的な研究に向かないという指摘もあります
（Strelkov 1986）。私は、コウモリ類の生殖器や生殖腺の形態について、種ごとの記載がある (Matthew 1941; Mokkapati and Domini 1977; Murthy, Vombika 1978; Murthy 1979, 1981; Madkour 1989) にもかかわらず、コウモリ類の分類に使用されていないことに着目しました。

そこで、1997年の発表の中でヒナコウモリ科10属の雄性生殖腺とその付属器官の外

部形態について研究を行いました。ここにその一部の図 VI-5-4 として示します。

図 VI-5-4 コウモリの雄性生殖器付属腺の形態
Figure VI-5-4 Morphology of accessory glands in male bats.
I - testis; bu - Cowper's gland; pr - prostate; v.d - vas deferens; v.s - seminal vesicles; g.v. - ampullary glands.
A - Myotis brandii, M. ikonnikovi, M. frater, M. nattereri, M. bomnibus, M. lythi, M. myotis, M. dasyenea, M. daubentoni, M. macrodactylus; B - Plecotus auritus; C - Barbastella barbastellus; B. leucomeas; D - Nyctalus leisleri, N. noctula, N. lasiopterus; E - Pipistrellus pipistrellus, P. nathusii, P. kuhlii; F - P. savi; G - Eptesicus nilssonii, E. borincki; H - E. serotinus, E. bottae, E. nasi tus; I - Vespertilio murinus; J - V. superans; K - Otonycteris hemprichii; L - Miniopterus schreibersi; M - Murina ussuriensis, M. leucogaster.
この中でも特に、*Pipistrellus*属に含まれていた*Pipistrellus savii*の生殖器の形態が*Pipistrellus*属とは大きく異なるため別属として区別する必要があることなど、属レベルまたは種レベルでの雄性生殖器の形態の違いを指摘することができます。また、さらなる検証は必要ですが、私は舌の形態学的なデータを種レベルでの特徴付けとして使えるのではないかという考えを持っています。特にユピナガコウモリ属*Miniopterus*の舌の構造は特徴的であり、他のヒナゴモモリ科*Vespertilionidae*と区別することができ、ユピナガコウモリ属を独立したユピナガコウモリ科*Miniopterus*として扱うべきであるという説を支持しています。ここに舌の形態の図VI-5-5を示します。

ところが、形態学的に種を区別が付けがたい場合は野生動物保護の観点からも、種の定義をどこに求めるのかが特に重要となります。ある意味では、最近発表してきた分子生物学的手法を用いれば簡単なことかもしれませんが、しかしながら、現在、いくつかの問題を指摘することができます。脊椎動物では、同じ種のいくつかの隔離個体群の遺伝的相互の距離が種間の遺伝的相遠の程度よりも大きくなることがあるという事実が知られています。ミトコンドリアDNAなどの塩基配列を用いた分子系統樹の解釈に関わることであると思いますが、過去の知見との異常などが原因と考えられるイントログレーションという問題もあります。このようなことから、専門の異なる研究者間で分類に関して意見の一致を見ることが大変難しい状況にあります。また、初めて遺伝子サンプルに登録された配列の種判別が正しく行われていない場合、多くの研究者の頭痛の種となります。

図VI-5-5 コウモリの舌上面の形態
Figure VI-5-5 Different structure types of the upper surface of bat tongue. A - *Nyctalus noctula*; B - *Miniopterus schreibersii*; C - *Rhinolophus ferrumequinum*; D - *Hipposideros armiger*.
5-3 コウモリ類研究における分子系統学的研究所分類学的研究の課題

例として、2003年にKawai et al.（2003）によってミトコンドリア DNA 遺伝子の ND1 配列およびCytb 配列が登録された Myotis davidiiについて紹介します。それまで捕獲記録がほとんどなかったこの種が、2003年以降に中国のあちこちでこの種が記録され始めました。ところが中国の研究者が種の識別をこの配列に頼ったところ、問題が生じました。というのは、Myotis davidiiの記載によると双の構造に非常に特徴がある（Tate 1941）とされているので、私がこの遺伝子配列で同定された個体の柄を調べたところ、記載された柄の構造とは異なっており、いくつかの変異が含まれることが分かりました。このためさらに詳細に調べてみると、遺伝子配列だけで種の同定がなされた個体の下顔の白処の特徴から、2003年に登録された個体は Myotis davidii とは別種である Myotis siligorensis と考えられました。Myotis siligorensis はネパールで記載され北インド、南中国、マレーシアと広がってボルネオに分布しており、現在4亜種に分けられています。中国で記載された "Myotis siligorensis"をさらに詳しく調べると、全体的には遺伝的な変異はほとんどないにもかかわらず、陰茎骨などの形態的特徴から3からグループに分けることができました（unpublished data）。先に述べたとおり陰茎骨は種ごとに特徴があるとされているため、この陰茎骨の形態に違いがある個体群はそれぞれ種として扱われる必要性があるでしょう。このように、分子生物学的方法による spre は、種を識別できないことが指摘できます。

他に例を挙げるとすれば、柄の構造や陰茎骨が明らかに異なるのに、分子系統樹では非常に近いグループとなっている種群が中国のホオヒキコウモリ（Myotis）属に見られます。これら の理由としては、分子マーカが適切ではない、コウモリの種分化が後ろの理解を超え現実にそぐわないものかもしれないなどの可能性があげられます。分子系統樹は、一つまたはいくつかの遺伝子配列を反映しているものであって、実際のコウモリの種分化を反映させていない可能性が考えられます。最近の分子系統学では遺伝子配列を調べることが新しい方法として注目されていますが、私の考えではコウモリの分類の主要な難しさはまだこの先に来るのではないかと考えています。ロシア極東および日本のコウモリの分類学は中国などから比べればやや進んでいると考えられます。ただ完全とは言えません。それはたとえば現在私が研究を進めているチチカコウモリ（Barbastella）属の分類にも言えることです。このコウモリの種は、私の見解では島嶼個体群ごとに分類を見直す必要があるといえるでしょう。また、多くの研究者がホ スリホオヒコウモリ Myotis gracilis が北海道およびロシア極東部に広く分布していると考えていますが、ハバロフスク北部やマガダネ州に分布する北方個体群は、南方個体群とは頭骨形態が異なっているようです。しかし、これらの個体群はまだ分子系統学的研究は行われておらず、研究の余地が残っているといえるでしょう。
5-4 コウモリ研究のこれからの課題と日露の協力

多くのコウモリでは、昼間のぬぐらと夜の採餌場所がかなり離れていることが知られています。また、冬と夏の間に長距離の渡りをする種があることが知られています。しかし極東ロシア地域ではこのような渡りや採餌とぬぐらに関するデータはほとんど知られておらず、ところが、これらのデータを得ることはきわめて今日的な課題と言えるでしょう。たとえば、コウモリが放射能の汚染地帯で飼いましょうが、別の汚染地帯にいるコウモリの挿入のぬぐら付近ではコウモリの被爆物によって放射能のバックグラウンドが上がることがあることが報告されています（Oprean et al. 2005）。また、入間共通感染症についての観点からも、コウモリの移動についてのデータはきわめて重要であると言えるでしょう。たとえば、2年前に沿海地方のある村の家にコウモリが逃げ込み、大音響で音楽を聴いている少女の下着にキックを襲ったコウモリがひっかき傷を負わせた例を紹介します。彼女は1ヶ月後になってしまいました。その後、形態学、ウィルス学、分子遺伝学調査によって、彼女の死因はこれまで知られていなかったコウモリ由来の新奇病ウィルス株に感染したためと分かりました（Leonova et al. 2010）。これは、極東ロシア地域よりコウモリの新奇病ウィルスが発見されたという最新の報告となりました。

このようにコウモリ研究は、動物相調査や動物学的研究が進むことによって一定の成果が上げられたとしても、次に新たな未解決の課題を産む状況にあります。このため、私は新たに産まれた課題についてロシア-日本両国の研究者の協力によって取り組むことができるのではないかと考えており、またその必要性があると考えています。
参考文献

Koenig V. G. (1968) ДЛИННОКРЫЛЫЙ ОБЫКНОВЕННЫЙ (Miniopterus schreibersi Kuhl)—НОВЫЙ ВИД ЛЕТУЧИХ МЫШЕЙ ДЛЯ ФАУНЫ ПРИМОРСКОГО КРАЯ. Зоол. журн. Т. 47, вып. 9, с. 1421.

Коваков Е. Н. (1970) О находке длиннокрыла обыкновенного (Miniopterus schreibersi Kuhl) в Приморье. Фауна Сибири. Новосибирск: Наука, 262-263.

Опен С. И. (1928) Звери Восточной Европы и Северной Азии. Т. 1. М.; Л.; ГИЗ, 631.

Сатунин К. А. (1914) Определитель млекопитающих Российской империи. Вып. 1. Рукокрылье, насекомоядные и хищные. Тифлис. Тип. Канцелярии Наместника на Кавказе.

VI-5 Distribution of the bats in Russian far east (Problems and questions)

Michail P. TIUNOV
Institute Biology and Soil Sciences, Far Eastern Branch of the Russian Academy of Sciences

It was a new finding for the region that taxonomic refinements, which clarified the boundaries of species’ ranges, made in recent years have shown a greater degree of originality of the Far Eastern fauna of bats. A significant number of species previously considered Palaearctic are now divided into a few forms, and western borders of areas of the Far Eastern species in many cases are only up to the Trans-Baikal and Altai. According to recent reports, there are 18 species of bats found in the Far East of Russia, and only 3 species of them have a Palaearctic distribution. The main area of other species is in either China or Japan. Russian Far East, these species are at the northern limit of its range. Much new things were lately obtained through the use of modern methods of molecular research. At the same time, more cases were found in which the results of morphological and molecular genetic studies strongly disagree. A number of similar results were obtained in the study of endemic fauna of China. Perhaps these species are young and evolution rate of the molecular marker used is below the rate of speciation. Perhaps our views on the process of speciation is not entirely untrue, since the molecular phylogeny reflects the evolutionary history of one or a few elements of the genome, and how it relates to phylogeny of organisms is not yet clear. Despite the large study of fauna of bats in Russia and Japan, comparing to the fauna of China, it is likely that in the near future there will be discoveries of new species. In connection with the problems in the nuclear industry, there is a need for more extensive studies of daily movements and seasonal migration of bats. Discovery of a new rabies virus of bats in the Primorsky Region only confirms the poor exploration of epidemiological value of these animals. The solution of many problems is only possible by combining the efforts of scientists from different countries.